Hostname: page-component-76dd75c94c-vpfzz Total loading time: 0 Render date: 2024-04-30T07:43:20.665Z Has data issue: false hasContentIssue false

Copper Mining in the Bronze Age at Mynydd Parys, Anglesey, Wales

Published online by Cambridge University Press:  24 May 2021

David A. Jenkins
Affiliation:
Llys Geraint, Bethesda, GwyneddLL57 4AX
Simon Timberlake
Affiliation:
Ashtree Cottage, 19, The High Street, Fen Ditton, CambridgeshireCB5 8ST
Andrew Davidson
Affiliation:
Gwynedd Archaeological Trust, Craig Beuno, Garth Road, Bangor, GwyneddLL57 2RT. Email: andrew.davidson@heneb.co.uk
Kalla Mal
Affiliation:
Department of Classics, Ancient History & Archaeology, University of Birmingham, Edgbaston, BirminghamB15 2TT
Peter Marshall
Affiliation:
Department of Classics, Ancient History & Archaeology, University of Birmingham, Edgbaston, BirminghamB15 2TT
Tim Mighall
Affiliation:
Department of Geography & Environment, School of Geosciences, University of Aberdeen, Elphinstone Road, AberdeenAB24 3UF
Charlotte O’Brien
Affiliation:
Archaeological Services, Department of Archaeology, Durham University, South Road, DurhamDH1 3LE
David N. Smith
Affiliation:
Department of Classics, Ancient History & Archaeology, University of Birmingham, Edgbaston, BirminghamB15 2TT

Abstract

The Bronze Age in Britain is now a term often used to include both the first use of copper c. 2400 bc and also tin-bronze from c. 2100 bc, all of which required the extensive use of copper. Prehistoric mining for this metal has been identified in surface and underground workings in Parys Mine, Mynydd Parys, Anglesey, although almost all of the surface workings are now obscured by the extensive deep spoil from more recent mining in the industrial period. These copper-bearing ores are in bedded lodes, together with some intruded vein deposits. The Bronze Age workings have been exposed underground where they have been intersected by the early 19th century industrial workings on and above the 16 fathom and 20 fathom levels in the Parys Mine. Spoil exposures contain stone hammers (‘mauls’), wood fragments, and charcoal; samples of the latter have been radiocarbon dated with chronological modelling suggesting activity took place in the first half of the 2nd millennium cal bc. Although relatively limited in extent, these important prehistoric mining sites are among the earliest found in the UK. They have survived due to their protection from surface erosion and limited accessibility.

Résumé

RÉSUMÉ

Extraction du cuivre à l‘âge du Bronze à Myndd Parys, Anglesey, Pays de galles, de David. A. Jenkins

L’âge du Bronze en Grande Bretagne est un terme fréqemment utilisé pour inclure à la fois le premier usage du cuivre env. 2400 av J.-C. et ausi le bronze d’étain env. 2100 av. J.-C., qui necessitaient tous l’usage extensif du cuivre. L’extraction de ce métal à la préhistoire a été identifiée en surface et sous terre dans des ouvrages dans la mine de de Parys, Myndd Parys, Anglesey, bien que les travaux en surface sont maintenant obscurcis par des débris étendus et épais d’extraction plus récente à la période indusdtrielle. Ces minerais porteurs de cuivre sont enfouis dans dans des couches avec des dépôts de veines introduits. Les ouvrages de l’âge du Bronze ont été exposés sous terre là où ils ont croisé les ouvrages industriels du début du 19ième siècle au niveau de la 16ième et de la 20ième brasse dans la mine de Parys. Les rejets exposés contiennent des marteaux de pierre (massues), des fragments de bois et des charbons de bois; des échantillons de ces derniers ont étés datés au C14 avec un modèle chronologique suggérant que l’activité avait pris place dans la première moitié du deuxième millénaire av J.C. Bien que relativement limités en étendue ces importants sites miniers préhistoriques sont parmi les plus anciens trouvés au Royaume Uni. Ils ont survécu grâce à de leur protrection de l’érosion en surface et leur accès restreint.

Zusammenfassung

ZUSAMMENFASSUNG

Kupferbergbau in der Bronzezeit in Mynydd Parys, Anglesey, Wales, von David A. Jenkins

Die Bronzezeit in Großbritannien ist heute ein Begriff, der oft verwendet wird, um sowohl die erste Verwendung von Kupfer um 2400 v. Chr. Als auch die Zinnbronze ab ca. 2100 v. Chr. Einzuschließen, die jeweils die umfangreiche Verwendung von Kupfer erforderten. Der prähistorische Abbau dieses Metalls wurde in der Parys Mine, Mynydd Parys, Anglesey, in übertägigen und untertägigen Gruben nachgewiesen, obwohl fast alle der übertägigen Gruben heute durch den umfangreichen Abraum des jüngeren Bergbaus aus dem industriellen Zeitalter verdeckt sind. Die kupferhaltigen Erze befinden sich in Lagergängen, zusammen mit einigen eingebetteten Ganglagerstätten. Die bronzezeitlichen Abbaustätten wurden unter Tage dort freigelegt, wo sie von den industriellen Abbaustätten des frühen 19. Jahrhunderts auf und oberhalb der 16-Faden- und 20-Faden-Sohle in der Parys-Mine durchschnitten wurden. Die Abraumfunde enthalten Steinhämmer („Schlägel“), Holzfragmente und Holzkohle; Proben der letzteren wurden mit Radiokohlenstoff datiert, wobei die chronologische Modellierung darauf hindeutet, dass die Aktivität in der ersten Hälfte des zweiten Jahrtausends v. Chr. Stattfand. Auch wenn die Ausdehnung relativ gering ist, gehören diese wichtigen prähistorischen Bergbaustätten zu den frühesten in Großbritannien gefundenen. Sie haben aufgrund ihres Schutzes vor Oberflächenerosion und ihrer begrenzten Zugänglichkeit überlebt.

Resumen

RESUMEN

Minería del cobre en la Edad del Bronce en Mynydd Parys, Anglesey, Gales, por David A. Jenkins

La Edad del Bronce en Gran Bretaña es un término que se emplea para incluir tanto el primer uso del cobre en torno al 2400 bc como el uso de las aleaciones de bronce y estaño a partir del 2100 bc, las cuales requieren una amplia utilización de cobre. La minería prehistórica de este metal se ha identificado en explotaciones superficiales y subterráneas en la mina de Parys, Mynydd Parys, Anglesey, aunque la mayor parte de los trabajos superficiales se encuentran en la actualidad ocultados por las extensivas y agresivas explotaciones mineras modernas durante el período industrial. Estos minerales que contienen cobre se encuentran en vetas estratificadas, junto con algunos depósitos de vetas intrusivas. Las extracciones adscritas a la Edad del Bronce se descubrieron en el subsuelo y fueron alteradas por las actividades industriales de principios del siglo XIX por encima de los niveles de 16 y 20 brazas en la mina de Parys. Las alteraciones producidas han permitido identificar mazas de piedra, fragmentos de madera y carbón; muestras de este último material han sido datadas por radiocarbono, y los modelos cronológicos sugieren que la actividad tuvo lugar en la primera mitad del II milenio cal bc. Aunque la extensión es relativamente limitada, estos importantes sitios mineros prehistóricos están entre los primeros documentados en Reino Unido. Estos restos se han conservado ya que estaban protegidos de la erosión superficial y con una limitada accesibilidad.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Prehistoric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Andrew, R. 1984. A Practical Pollen Guide to the British Flora. Technical guide 1. Cambridge: Quaternary Research Association Google Scholar
AMC. n.d. Parys Mountain Mine – historical outline up to 2007. Available at: https://angleseymining.co.uk/Parys-Mountain-Mine-Historical-Outline [Accessed 25/02/2021]Google Scholar
Barber, K.E. 1976. History of vegetation. In Chapman, S.B. (ed.), Methods in Plant Ecology, 583. Oxford: Blackwell Google Scholar
Bayliss, A., Bronk Ramsey, C., van der Plicht, J. & Whittle, A. 2007. Bradshaw and Bayes: Towards a timetable for the Neolithic. Cambridge Archaeological Journal 17(Supplement 1), 128 CrossRefGoogle Scholar
Bennett, K.D., Whittington, G. & Edwards, K.J. 1994. Recent plant nomenclatural changes and pollen morphology in the British Isles. Quaternary Newsletter 73, 16 Google Scholar
Bevins, R. 1994. A Mineralogy of Wales. Cardiff: National Museum of Wales Google Scholar
Bevins, R.E., Patrick, R.A.D., Haynes, L. & Thomas, L.P. 2010. Mineralisation in England and Wales. Peterborough: Joint Nature Conservation Committee Google Scholar
Bougarit, D., Mille, B., Burens, A. & Carozza, L. 2002. Smelting of chalcopyrite during chalcolithic times: Some have done it in ceramic pots as vase-furnaces. In Kars, H. & Burke, E. (eds), 33rd International Symposium on Archaeometry, Amsterdam 22–26 April 2002, 297302. Amsterdam: Vrje Universiteit Google Scholar
Bray, P.J. & Pollard, A.M. 2012. A new interpretative approach to the chemistry of copper-alloy objects, source, recycling and technology. Antiquity 86, 853–67CrossRefGoogle Scholar
Briggs, C.S. 1976. Note on prehistoric mining in Anglesey. Historical Metallurgy 10(1), 43 Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1), 337–60CrossRefGoogle Scholar
Brown, A.G., Carpenter, R.G. & Walling, D.E. 2007. Monitoring fluvial pollen transport, its relationship to catchment vegetation and implications for palaeoenvironmental studies. Review of Palaeobotany and Palynology 147(1), 6076 CrossRefGoogle Scholar
Buck, C.E., Litton, C.D. & Smith, A.F.M. 1992. Calibration of radiocarbon results pertaining to related archaeological events. Journal of Archaeological Science 19(5), 497512 CrossRefGoogle Scholar
Bunting, M.J., Tipping, R. & Downes, J. 2001. ‘Anthropogenic’ pollen assemblages from a Bronze Age cemetery at Linga Fiold, West Mainland, Orkney. Journal of Archaeological Science 28(5), 487500 CrossRefGoogle Scholar
Burnham, B., Burnham, H. & Walker, M.J.C. 1992. Excavations across the Annell and Gwenlais Leats, near Dolaucothi, in 1990. Archaeology in Wales 32, 2–8Google Scholar
Cambrian Caving Council. 2010. Cave life of Britain [online]. Available at: http://www.cambriancavingcouncil.org.uk/cavelife/index.html [Accessed 01/11/2016]Google Scholar
Chapman, D. & Chapman, S. 2013. Pentrwyn Bronze Age copper smelting site: Reconstructing and using the Pentrwyn pit furnaces. Ancient Arts (Where available: unpublished report)Google Scholar
Craddock, P.T. 1995. Early Metal Mining and Production. London: Archetype Google Scholar
Crew, P. & Crew, S. (eds). 1990. Early Mining in the British Isles. Proceedings of the Early Mining Workshop at Plas Tan y Bwlch Snowdonia National Park Study Centre, 17–19 November, 1989. Tan y Bwlch: Tan y Bwlch Occasional Paper 1 Google Scholar
Cushing, E.J. 1967. Evidence for differential pollen preservation in Late Quaternary sediments in Minnesota. Review of Palaeobotany and Palynology 4, 87101 CrossRefGoogle Scholar
Davies, O. 1939. Excavations on Parys Mountain. Transactions of Anglesey Antiquarian Society and Field Club 1939, 40–2Google Scholar
Delcourt, P.A. & Delcourt, H.R. 1980. Pollen preservation and Quaternary environmental history in the southeastern United States. Palynology 4(1), 215–31CrossRefGoogle Scholar
Dodd, A.H. 1926. Parys Mountain during the Industrial Revolution 1760-1840. Transactions of the Anglesey Antiquarian Society 1926, 90105 Google Scholar
Dutton, L.A. & Fasham, P.J. 1994. Prehistoric Copper Mining on the Great Orme, Llandudno, Gwynedd. Proceedings of the Prehistoric Society 60, 245–86CrossRefGoogle Scholar
Fægri, K., Kaland, P.E. & Krzywinski, K. 1989. Textbook of Pollen Analysis (4 edn). Chichester: Wiley Google Scholar
Gale, R. & Cutler, D. 2000. Plants in Archaeology: Identification manual of vegetative plant materials used in Europe and the southern Mediterranean to c. 1500. Kew: Westbury and Royal Botanic Gardens, Kew Google Scholar
Geel, B. van, Buurman, J., Brinkkemper, O., Schelvis, J., Aptroot, A., van Reenen, G. & Hakbijl, T. 2003. Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. Journal of Archaeological Science 30, 873–83CrossRefGoogle Scholar
Greenly, E. 1919. The Geology of Anglesey, 2 vols. London: Memoirs of the Geological Survey Google Scholar
Grimm, E. 1991–93. TILIA and TILIA.GRAPH. Springfield IL: Illinois State Museum Google Scholar
Hall, A. 2003. Recognition and characterisation of turves in archaeological occupation deposits by means of macrofossil plant remains. Portsmouth: Historic England Centre for Archaeology Report 16/2003 Google Scholar
Harris, J.R. 1964. The Copper King. Liverpool: Liverpool University Press Google Scholar
Hope, B.D. 1994. A Curious Place, The Industrial History of Amlwch (1550–1950). Wrexham: Bridge Books Google Scholar
Hudson, H.J. 1986. Fungal Biology. London: Edward Arnold Google Scholar
Hyman, P. & Parsons, M.S. 1992. A Review of the Scarce and Threatened Coleoptera of Great Britain. Peterborough: UK Joint Nature Conservation Committee U.K. Nature Conservation Volume 3Google Scholar
James, D. 1988. Prehistoric copper mining on the Great Ormes Head. In Ellis-Jones, J. (ed.), Aspects of Ancient Mining and Metallurgy: Acta of a British School at Athens Centenary Conference, Bangor 1986, 115–21. Bangor: University College of North Wales Google Scholar
James, D. 1990. Prehistoric mining on the Great Ormes Head. In Crew & Crew 1990, 1–4Google Scholar
Jenkins, D.A. 1995. Mynydd Parys copper mines. Archaeology in Wales 35, 35–7Google Scholar
Jenkins, D.A. 2015. Mine drainage at Mynydd Parys: An intriguing history and recent problems. In Linton, D. (ed.), Mining Technology: Technical Innovation in the Extractive Industries, Proceedings of the NAMHO Conference 2014, 7783. Llanaber: Welsh Mines Society Google Scholar
Jenkins, D.A. & Lewis, C.A. 1991. Prehistoric mining for copper in the Great Orme. In Budd, P., Chapman, B., Jackson, C., Janaway, R.C. & Ottaway, B.S. (eds), Archaeological Sciences 1989, 5161: Oxford: Oxbow Monograph 91 Google Scholar
Jenkins, D.A., Owen, A. & Lewis, A. 2001. A rapid geochemical survey of the Bronze Age Copper Mines on the Great Orme. In Millard, A. (ed.), Archaeological Sciences ’97, 164–69. Oxford: British Archaeological Report S939 Google Scholar
Jenkins, D.A. & Timberlake, S. 1997. Geoarchaeological research into prehistoric mining for copper in Wales: A report to the Leverhulme Trust on completion of Grant No.F/174/L. Bangor: University of Bangor, unpublished reportGoogle Scholar
Jessop, L. 1986. Dung Beetles and Chafers: Coleoptera: Scarabaeidae. London: Handbooks for the Identification of British Insects 5(11)Google Scholar
Jones, J., Tinsley, H. & Brunning, R. 2007. Methodologies for assessment of the state of preservation of pollen and plant macrofossil remains in waterlogged deposits. Environmental Archaeology 12, 7186 CrossRefGoogle Scholar
Kenney, J. 2012. Burnt mound in north-west Wales: Are these ubiquitous features really so dull? In Britnell, W.J. & Silvester, R.J. (eds), Reflections on the Past: Essays in honour of Frances Lynch, 254–79. Welshpool: Cambrian Archaeological Association Google Scholar
Kenward, H.K., Hall, A.R., & Jones, A.K.G. 1980. A tested set of techniques for the extraction of plant and animal macrofossils from waterlogged archaeological deposits. Scientific Archaeology 22, 315 Google Scholar
Koch, K. 1989. Die Kafer Mitteleuropas. Okologie. Band 2. Krefeld: Goecke and Evers Google Scholar
Koch, K. 1992. Die Kafer Mitteleuropas. Okologie. Band 3. Krefeld: Goecke and Evers Google Scholar
Krauskopf, K.B. & Bird, D.K. 1994. Introduction to Geochemistry (3 edn) New York: McGraw-Hill Google Scholar
Lewis, A. 1996. Prehistoric Mining at the Great Orme: Criteria for the identification of early mining. Unpublished MA dissertation, University of Wales, BangorGoogle Scholar
Lindroth, C.H. 1974. Coleoptera: Carabidae. London: Handbooks for the Identification of British 4(2) Google Scholar
Lowe, J.J. & Walker, M.J.C. 1997. Reconstructing Quaternary Environments. London: Prentice Hall Google Scholar
Lucht, W.H. 1987. Die Käfer Mitteleuropas (Katalog). Krefeld: Goecke and Evers Google Scholar
Luff, M. 2007. The Carabidae (ground beetles) of Britain and Ireland. London: Handbooks for the Identification of British Insects 4(2) (2 edn)Google Scholar
Lynch, F. 1991. Prehistoric Anglesey (revised edn). Llangefni: Anglesey Antiquarian Society Google Scholar
Mighall, T.M., Abrahams, P.W., Grattan, J.P., Hayes, D., Timberlake, S. & Forsyth, S. 2002a. Geochemical evidence for atmospheric pollution derived from prehistoric copper mining at Copa Hill, Cwmystwyth, mid-Wales, UK. Science of the Total Environment 292, 6980 CrossRefGoogle ScholarPubMed
Mighall, T.M. & Chambers, F.M. 1993. The environmental impact of prehistoric copper mining at Copa Hill, Cwmystwyth, Wales. The Holocene 3(3), 260–4CrossRefGoogle Scholar
Mighall, T.M., Chambers, F.M., Lanting, J. & O’Brien, W.F. 2000. Prehistoric copper mining and its impact on vegetation: Palaeoecological evidence from Mount Gabriel, Co. Cork, southwest Ireland. In Nicholson, R.A. & O’Connor, T.P. (eds), Prehistoric People as Agents of Environmental Change, 1929. Oxford: Oxbow Google Scholar
Mighall, T.M. & Timberlake, S. 2006. Prehistoric mining and its environmental context: A Report to the Leverhulme Trust on completion of Grant No. F/00/732/C. Coventry: University of Coventry unpublished reportGoogle Scholar
Mighall, T.M., Timberlake, S., Clark, S.H.E. & Caseldine, A. 2002b. A palaeoenvironmental investigation of mine infill sediments from Copa Hill, Cwmystwyth, mid-Wales. Journal of Archaeological Science 29(10), 1161–88CrossRefGoogle Scholar
Mighall, T.M., Timberlake, S., Foster, I.D.L., Krupp, E. & Singh, S. 2009. Ancient copper and lead pollution records from a raised bog complex in Central Wales, UK. Journal of Archaeological Science 36(7), 1504–15CrossRefGoogle Scholar
Mighall, T., Timberlake, S., Martínez-Cortizas, A., Silva-Sánchez, N. & Foster, I.D.L. 2017. Did prehistoric and Roman mining and metallurgy have a significant impact on vegetation? Journal of Archaeological Science: Reports 11, 613–25Google Scholar
Moore, P.D., Webb, J.A. & Collinson, M.E. 1991. Pollen Analysis (2 edn). London: Blackwell Scientific Google Scholar
Morris, L. 1748. Plans of Harbours, Bars, Bays and Roads in St. George’s Channel. London: Lewis Morris Google Scholar
Nakagawa, T., Brugiapaglia, E., Digerfeldt, G., Reille, M., De Beaulieu, J.-L. & Yasunda, Y. 1998. Dense-media separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: Comparison with the conventional method. Boreas 27, 1524 CrossRefGoogle Scholar
National Library of Wales. 1926. Calendar of Wynn Papers. Aberystwith: National Library of Wales Google Scholar
Needham, S.P. 1996. Chronology and periodisation in the British Bronze Age. Acta Archaeologica 67, 121–40Google Scholar
Needham, S.P., Lawson, A.J. & Green, H.S. 1985. Early Bronze Age Hoards . British Bronze Age Metalwork A1–6. London: British Museum Google Scholar
North, F.J. 1962. Mining for Metals in Wales. Cardiff: National Museum of Wales Google Scholar
Northover, J.P. 1980. The analysis of Welsh Bronze Age metalwork. In H.N. Savory, Guide Catalogue of the Bronze Age Collections, 229–36. Cardiff: National Museum of Wales Google Scholar
O’Brien, W. 1994. Mount Gabriel: Bronze Age mining in Ireland. Galway: Galway University Press Google Scholar
O’Brien, W. 2004. Ross Island: Mining, metal and society in early Ireland. Galway: Bronze Age Studies 6 Google Scholar
O’Brien, W. 2015. Prehistoric Copper Mining in Europe: 5500–500 bc . Oxford: Oxford University Press Google Scholar
Pennant, T. 1778. A Tour in Wales MDCCLXXVIII: The tour in North Wales. London: Henry Hughes Google Scholar
Pickin, J. 1990. Stone tools and early metal mining in England and Wales. In Crew & Crew 1990, 39–42Google Scholar
Pointon, C.R. & Ixer, R.A. 1980. Parys Mountain mineral deposit, Anglesey, Wales: Geology and ore mineralogy. Transactions of the Institution of Mining and Metallurgy, Section B Applied Earth Science 89(3), 143–55Google Scholar
Preston, C.D., Pearman, D.A. & Dines, T.D. 2002. New Atlas of the British and Irish Flora. Oxford: Oxford University Press Google Scholar
Price, G.P. & Abrahams, P.W. 1994. Copper tolerance in a population of Silene vulgaris ssp. maritima at Dolfrwynog Bog near Dolgellau, North Wales. Environmental Geochemistry and Health 16(1), 2730 CrossRefGoogle Scholar
RCAHMW. 1961. An Inventory of the Ancient Monuments in Anglesey (reprint). London: The Royal Commission on Ancient and Historic Monuments in Wales and Monmouthshire, HMSO Google Scholar
Reille, M. 1992. Pollen et spores d’Europe et d’Afrique du Nord. Marseille: Laboratoire de botanique historique et palynologie Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatt, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M. & Plicht, J. van der 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp . Radiocarbon 55(4), 1869–87CrossRefGoogle Scholar
Robinson, M.A. 1981. The use of ecological groupings of Coleoptera for comparing sites. In Jones, M. & Dimbleby, G. (eds), The Environment of Man: The Iron Age to the Anglo-Saxon period, 251–86. Oxford: British Archaeological Report 87 Google Scholar
Robinson, M.A. 1983. Arable/pastoral ratios from insects? In Jones, M. (ed.), Integrating the Subsistence Economy, 1947. Oxford: British Archaeological Report S181 Google Scholar
Rohl, B. & Needham, S. 1998. The Circulation of Metal in the British Bronze Age: The application of lead isotope analysis. London: British Museum Occasional Paper 102 Google Scholar
Rostoker, W., Pigott, V.C. & Dvorak, J.R. 1989. Direct reduction to copper metal by oxide-sulfide mineral interaction. Archaeomaterials 3, 6987 Google Scholar
Rothwell, N. 2007. Parys Mountain and the Lentin Letters. Amlwch: Printworks Google Scholar
Rowlands, J. 2002. The Copper Mountain (revised edn). Anglesey: Stone Science Google Scholar
Rutty, J. 1761. Of the vitriolic waters of Amlwch in the Isle of Anglesey. Philosophical Transactions of the Royal Society 51, 470–77Google Scholar
Stace, C. 1991. New Flora of the British Isles. Cambridge: Cambridge University Press Google Scholar
Stace, C. 2010. New Flora of the British Isles. Cambridge: Cambridge University Press Google Scholar
Stanley, W.O. 1873. Notes on vestiges of Roman workings for copper in Anglesey. Archaeological Journal 30, 5962 CrossRefGoogle Scholar
Sykes, C. 1796. Journal of a Tour in Wales. MS.2258C. Cardiff: National Library of Wales (typescript copy)Google Scholar
Timberlake, S. 1987. An archaeological investigation of early mineworkings on Copa Hill, Cwmystwyth. Archaeology in Wales 27, 1820 Google Scholar
Timberlake, S. 1988. Excavations at Parys Mountain and Nantyreira. Archaeology in Wales 28, 1117 Google Scholar
Timberlake, S. 1989. Parys Mountain and Nantyreira C14 dates. Archaeology in Wales 29, 4142 Google Scholar
Timberlake, S. 2003. Excavations on Copa Hill, Cwmystwyth 1989-99: An Early Bronze Age copper mine within the uplands of Central Wales. Oxford: British Archaeological Report 348 Google Scholar
Timberlake, S. 2009. Copper mining and metal production at the beginning of the British Bronze Age. In Clark, P. (ed.), Bronze Age Connections, 96122. Oxford: Oxbow Books Google Scholar
Timberlake, S. 2013. Prehistoric copper extraction in Britain: Ecton Hill, Staffordshire. Proceedings of the Prehistoric Society 80, 159206 CrossRefGoogle Scholar
Timberlake, S. 2016. New ideas on the exploitation of copper, tin, gold and lead ores in Bronze Age Britain: The mining, smelting and movement of metal. In Mair, A.C. (ed.), Materials and Manufacturing Processes 32(7–8), Taylor & Frances online. DOI: 10.1080/10426914.2016.1221113 CrossRefGoogle Scholar
Timberlake, S. & Craddock, B.R. 2013. Prehistoric metal mining in Britain: The study of cobble stone mining tools based on artefact study, ethnography and experimentation. Chungara Revista de Antropología Chilena 45, 3359 Google Scholar
Timberlake, S. & James, D. 2018. A new Early Bronze Age mine site at Cwmystwyth, Ceredigion: Archaeological excavations at Penparc (Comet Lode (W)) in 2017. Archaeology in Wales 57–58, 91100 Google Scholar
Timberlake, S. & Jenkins, D.A. 2001. Prehistoric mining: Geochemical evidence from sediment cores at Mynydd Parys, Anglesey. In Millard, A. (ed.), Archaeological Sciences ’97, 193–99. Oxford: British Archaeological Report S939 Google Scholar
Timberlake, S. & Marshall, P. 2014. The beginnings of metal production in Britain: A new light on the exploitation of ores and the dates of Bronze Age mines. Historical Metallurgy 47(1), 7592 Google Scholar
Tipping, R. 1987. The origins of corroded pollen grains at five early postglacial pollen sites in western Scotland. Review of Palaeobotany & Palynology 53, 151–61CrossRefGoogle Scholar
Tipping, R., Carter, S. & Johnston, D. 1994. Soil pollen and soil micromorphological analyses of old ground surfaces on Biggar Common, Borders Region, Scotland. Journal of Archaeological Science 21(3), 387401 CrossRefGoogle Scholar
Tomas, D. 1972. Michael Faraday in Wales. Denbigh: Gwasg Gee Google Scholar
Ward, G.K. & Wilson, S.R. 1978. Procedures for comparing and combining radiocarbon age determinations: A critique. Archaeometry 20(1), 1932 CrossRefGoogle Scholar
White, R.B 1977. Rhosgoch to Stanlow Shell Oil Pipeline. Bulletin of the Board of Celtic Studies 27, 465–90Google Scholar
Williams, R.A. 2019. Boom and bust in Bronze Age Britain: Major copper production from the Great Orme mine and European trade c. 1600–1400 bc . Antiquity 93(371), 1178–96CrossRefGoogle Scholar
Wilmshurst, J.M. & McGlone, M.S. 2005a. Corroded pollen and spores as indicators of changing lake sediment sources and catchment disturbance. Journal of Paleolimnology 34(4), 503–17CrossRefGoogle Scholar
Wilmshurst, J.M. & McGlone, M.S. 2005b. Origin of pollen and spores in surface lake sediments: Comparison of modern palynomorph assemblages in moss cushions, surface soils and surface lake sediments. Review of Palaeobotany and Palynology 136, 115 CrossRefGoogle Scholar
Supplementary material: PDF

Jenkins et al. supplementary material

Jenkins et al. supplementary material

Download Jenkins et al. supplementary material(PDF)
PDF 194.9 KB