Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-21T05:11:48.429Z Has data issue: false hasContentIssue false

The identity G(D)f = F for a linear partial differential operator G(D). Lusin type and structure results in the non-integrable case

Published online by Cambridge University Press:  26 November 2020

Silvano Delladio*
Dipartimento di Matematica, University of Trento, via Sommarive 14, Povo, I-38123Trento, Italy (


We prove a Lusin type theorem for a certain class of linear partial differential operators G(D), reducing to [1, Theorem 1] when G(D) is the gradient. Moreover, we describe the structure of the set {G(D)f = F}, under assumptions of non-integrability on F, in terms of lower dimensional rectifiability and superdensity. Applications to Maxwell type system and to multivariable Cauchy–Riemann system are provided.

Research Article
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alberti, G.. A Lusin type theorem for gradients. J. Funct. Anal. 100 (1991), 110118.CrossRefGoogle Scholar
Balogh, Z. M.. Size of characteristic sets and functions with prescribed gradient. J. Reine Angew. Math. 564 (2003), 6383.Google Scholar
Balogh, Z. M., Pintea, C. and Rohner, H.. Size of tangencies to non-involutive distributions. Indiana Univ. Math. J. 60 (2011), 20612092.CrossRefGoogle Scholar
Colombo, F., Sabadini, I., Sommen, F. and Struppa, D. C.. Analysis of Dirac systems and computational algebra. In Progress in mathematical physics, vol. 39, (Boston, MA: Birkhäuser Boston Inc., 2004), isbn: 978-0-8176-4255-2.Google Scholar
Delladio, S.. A short note on enhanced density sets. Glasg. Math. J. 53 (2011), 631635.CrossRefGoogle Scholar
Delladio, S.. Functions of class C 1 subject to a Legendre condition in an enhanced density set. Rev. Mat. Iberoam. 28 (2012), 127140.CrossRefGoogle Scholar
Delladio, S.. On some properties of t h, 1 functions in the Calderon–Zygmund theory. Methods Appl. Anal. 19 (2012), 119.CrossRefGoogle Scholar
Delladio, S.. A note on some topological properties of sets with finite perimeter. Glasg. Math. J. 58 (2016), 637647.CrossRefGoogle Scholar
Delladio, S.. Structure of tangencies to distributions via the implicit function theorem. Rev. Mat. Iberoam. 34 (2018), 13871400.CrossRefGoogle Scholar
Delladio, S.. Structure of prescribed gradient domains for non-integrable vector fields. Ann. Mat. Pura ed Appl. (1923) 198 (2019), 685691. DOI: 10.1007/s10231-018-0793-1.CrossRefGoogle Scholar
Evans, L. C.. Partial differential equations. Graduate studies in mathematics, vol. 19, (Providence, RI: American Mathematical Society, 1998), isbn: 978-0-8218-4974-3.Google Scholar
Evans, L. C. and Gariepy, R. F.. Measure theory and fine properties of functions. (Studies in Advanced Math.). (Boca Raton, Florida: CRC Press, 1992).Google Scholar
Federer, H.. Geometric measure theory. (New York: Springer-Verlag, 1969).Google Scholar
Francos, G.. The Luzin theorem for higher-order derivatives. Michigan Math. J. 61 (2012), 507516.CrossRefGoogle Scholar
Fu, J. H. G.. Erratum to ‘some remarks on Legendrian rectifiable currents’. Manuscripta Math. 113 (2004), 397401.CrossRefGoogle Scholar
Krantz, S. G.. Function theory of several complex variables, 2nd edn. (Providence, RI: AMS Chelsea Publishing, 2001).CrossRefGoogle Scholar
Mattila, P.. Geometry of sets and measures in Euclidean spaces, vol. 44 (Cambridge studies in advanced mathematics. (Cambridge, UK: Cambridge University Press, 1995), isbn: 978-0-5216-5595-8.Google Scholar
Rudin, W.. Real and complex analysis. (New York: McGraw-Hill, 1970).Google Scholar
Shakarchi, R. and Stein, E. M.. Real analysis (measure theory, integration and Hilbert spaces). (Princeton and Oxford: Princeton University Press, 2005).Google Scholar