Hostname: page-component-54dcc4c588-tfzs5 Total loading time: 0 Render date: 2025-09-11T07:59:46.577Z Has data issue: false hasContentIssue false

Homogenization of vectorial free-discontinuity functionals with cohesive type surface terms

Published online by Cambridge University Press:  08 August 2025

Gianni Dal Maso
Affiliation:
SISSA, Via Bonomea, Trieste, Italy (dalmaso@sissa.it)
Davide Donati*
Affiliation:
SISSA, Via Bonomea, Trieste, Italy (ddonati@sissa.it)
*
*Corresponding author.

Abstract

The results on Γ-limits of sequences of free-discontinuity functionals with bounded cohesive surface terms are extended to the case of vector-valued functions. In this framework, we prove an integral representation result for the Γ-limit, which is then used to study deterministic and stochastic homogenization problems for this type of functional.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akcoglu, M. A. and Krengel, U.. Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323 (1981), 5367.Google Scholar
Alberti, G.. Rank one property for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A. 123 (1993), 239274.10.1017/S030821050002566XCrossRefGoogle Scholar
Alberti, G., Csörnyei, M. and Preiss, D.. Structure of null sets in the plane and applications. In European Congress of Mathematics, (Eur. Math. Soc., Zürich, 2005).Google Scholar
Ambrosio, L.. A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B (7). 3 (1989), 857881.Google Scholar
Ambrosio, L.. Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111 (1990), 291322.10.1007/BF00376024CrossRefGoogle Scholar
Ambrosio, L.. A new proof of the SBV compactness theorem. Calc. Var. Partial Differential Equations. 3 (1995), 127137.10.1007/BF01190895CrossRefGoogle Scholar
Ambrosio, L., Fusco, N. and Pallara, D.. Functions of Bounded Variation and Free Discontinuity Problems. (Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000).10.1093/oso/9780198502456.001.0001CrossRefGoogle Scholar
Bouchitté, G., Braides, A. and Buttazzo, G.. Relaxation results for some free discontinuity problems. J. Reine Angew. Math. 458 (1995), 118.Google Scholar
Bouchitté, G., Fonseca, I and Mascarenhas, L.. A global method for relaxation. Arch. Ration. Mech. Anal. 145 (1998), 5198.Google Scholar
Bourdin, B., Francfort, G. A. and Marigo, J. -J.. The Variational Approach to Fracture. Vol. 91, 5148, (Springer, New York, 2008) reprinted from. J. Elasticity.10.1007/978-1-4020-6395-4CrossRefGoogle Scholar
Braides, A.. Approximation of Free-Discontinuity Problems. Volume 1694 of Lecture Notes in Mathematics., (Springer-Verlag, Berlin, 1998).Google Scholar
Braides, A., Defranceschi, A. and Vitali, E.. Homogenization of free discontinuity problems. Arch. Ration. Mech. Anal. 135 (1996), 297356.10.1007/BF02198476CrossRefGoogle Scholar
Cagnetti, F., Dal Maso, G., Scardia, L. and Zeppieri, C.I.. Γ-convergence of free-discontinuity problems. Ann. Inst. H. Poincaré C Anal. Non Linéaire. 36 (2019), 10351079.10.1016/j.anihpc.2018.11.003CrossRefGoogle Scholar
Cagnetti, F., Dal Maso, G., Scardia, L. and Zeppieri, C.I.. Stochastic homogenisation of free-discontinuity problems. Arch. Ration. Mech. Anal. 233 (2019), 935974.10.1007/s00205-019-01372-xCrossRefGoogle Scholar
Cagnetti, F., Dal Maso, G., Scardia, L. and Zeppieri, C.I.. A global method for deterministic and stochastic homogenisation in BV. Ann. PDE. 8 (2022), .10.1007/s40818-022-00119-4CrossRefGoogle ScholarPubMed
Celada, P. and Dal Maso, G.. Further remarks on the lower semicontinuity of polyconvex integrals. Ann. Inst. H. Poincaré C Anal. Non Linéaire. 11 (1994), 661691.10.1016/s0294-1449(16)30173-1CrossRefGoogle Scholar
Dal Maso, G.. An Introduction to Γ-Convergence. (Birkhäuser, Basel, 1990).Google Scholar
Dal Maso, G. and Modica, L.. Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. 368 (1986), 2842.Google Scholar
Dal Maso, G. and Toader, R.. A new space of generalised functions with bounded variation motivated by fracture mechanics. NoDEA Nonlinear Differential Equations Appl. 29 (2022), .10.1007/s00030-022-00793-0CrossRefGoogle Scholar
Dal Maso, G. and Toader, R.. Gamma-convergence and integral representation for a class of free discontinuity functionals. J. Convex Anal. 31 (2024), 411476.Google Scholar
Dal Maso, G. and Toader, R.. Homogenisation problems for free discontinuity functionals with bounded cohesive surface terms. Arch. Ration. Mech. Anal. 248 (2024), .10.1007/s00205-024-02053-0CrossRefGoogle Scholar
De Giorgi, E. and Letta, G.. Une notion générale de convergence faible pour des fonctions croissantes d’ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). 4 (1977), 6199.Google Scholar
De Philippis, G. and Rindler, F.. On the structure of $\mathcal{A}$-free measures and applications. Ann. of Math. (2). 184 (2016), 10171039.10.4007/annals.2016.184.3.10CrossRefGoogle Scholar
Donati, D.. A new space of generalised vector-valued functions of bounded variation. NoDEA Nonlinear Differential Equations Appl. 32 (2025) .10.1007/s00030-025-01063-5CrossRefGoogle Scholar
Donnarumma, A. F. and Friedrich, M.. Stochastic homogenisation for functionals defined on asymptotically piecewise rigid functions. Calc. Var. Partial Differential Equations. 64 (2015), .Google Scholar
Dugdale, D. S.. Yielding of steel sheets containing slits. J. Mech. and Phys. Solids. 8 (1960), 100104.10.1016/0022-5096(60)90013-2CrossRefGoogle Scholar
Evans, L. C. and Gariepy, R. F.. Measure Theory and Fine Properties of Functions. revised edition, (CRC Press, 2015).10.1201/b18333CrossRefGoogle Scholar
Fonseca, I and Müller, S.. Quasi-convex integrands and lower semicontinuity in L 1. SIAM J. Math. Anal. 23 (1992), 10811098.10.1137/0523060CrossRefGoogle Scholar
Francfort, G. A. and Marigo, J. -J.. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids. 46 (1998), 13191342.10.1016/S0022-5096(98)00034-9CrossRefGoogle Scholar
Friedrich, M., Perugini, M. and Solombrino, F.. Γ-convergence for free-discontinuity problems in linear elasticity: homogenization and relaxation. Indiana Univ. Math. J. 72 (2023), 19492023.10.1512/iumj.2023.72.9499CrossRefGoogle Scholar
Fusco, N. and Hutchinson, J. E.. A direct proof for lower semicontinuity of polyconvex functionals. Manuscripta Math. 87 (1995), 3550.10.1007/BF02570460CrossRefGoogle Scholar
Giacomini, A. and Ponsiglione, M.. A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications. Arch. Ration. Mech. Anal. 180 (2006), 399447.10.1007/s00205-005-0392-3CrossRefGoogle Scholar
Giusti, E. and Williams, G. H.. Minimal Surfaces and Functions of Bounded Variation. Vol.80, (Springer, 1984).10.1007/978-1-4684-9486-0CrossRefGoogle Scholar
Griffith, A. A.. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A. 221 (1920), 163198.Google Scholar
Licht, C. and Michaille, G.. Global-local subadditive ergodic theorems and application to homogenization in elasticity. Ann. Math. Blaise Pascal. 9 (2002), 2162.10.5802/ambp.149CrossRefGoogle Scholar
Mainik, A. and Mielke, A.. Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci. 19 (2009), 221248.10.1007/s00332-008-9033-yCrossRefGoogle Scholar
Massaccesi, A. and Vittone, D.. An elementary proof of the rank-one theorem for BV functions. J. Eur. Math. Soc. (JEMS). 21 (2019), 32553258.10.4171/jems/903CrossRefGoogle Scholar
Mielke, A. and Roubíček, T.. Numerical approaches to rate-independent processes and applications in inelasticity. M2AN Math. Model. Numer. Anal. 43 (2009), 399428.10.1051/m2an/2009009CrossRefGoogle Scholar
Mielke, A. and Roubíček, T.. Rate-Independent Systems, Vol. 193, (Springer, New York, 2015).10.1007/978-1-4939-2706-7CrossRefGoogle Scholar
Mielke, A., Roubíček, T. and Stefanelli, U.. Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Partial Differential Equations. 31 (2008), 387416.10.1007/s00526-007-0119-4CrossRefGoogle Scholar
Mielke, A. and Timofte, A. M.. Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal. 39 (2007), 642668.10.1137/060672790CrossRefGoogle Scholar