No CrossRef data available.
Published online by Cambridge University Press: 08 March 2022
We consider the following inhomogeneous problems\[ \begin{cases} \epsilon^{2}\mbox{div}(a(x)\nabla u(x))+f(x,u)=0 & \text{ in }\Omega,\\ \frac{\partial u}{\partial \nu}=0 & \text{ on }\partial \Omega,\\ \end{cases} \]where $\Omega$
 is a smooth and bounded domain in general dimensional space $\mathbb {R}^{N}$
 is a smooth and bounded domain in general dimensional space $\mathbb {R}^{N}$ , $\epsilon >0$
, $\epsilon >0$ is a small parameter and function $a$
 is a small parameter and function $a$ is positive. We respectively obtain the locations of interior transition layers of the solutions of the above transition problems that are $L^{1}$
 is positive. We respectively obtain the locations of interior transition layers of the solutions of the above transition problems that are $L^{1}$ -local minimizer and global minimizer of the associated energy functional.
-local minimizer and global minimizer of the associated energy functional.
 -dimensional domains. J. Differ. Eqns 190 (2003), 16–38.CrossRefGoogle Scholar
-dimensional domains. J. Differ. Eqns 190 (2003), 16–38.CrossRefGoogle Scholar . Proc. Royal Soc. Edinburgh A 146 (2016), 107–139.CrossRefGoogle Scholar
. Proc. Royal Soc. Edinburgh A 146 (2016), 107–139.CrossRefGoogle Scholar -convergenza. Boll. Unione Mat. Ital. Sez. 14B (1977), 285–299.Google Scholar
-convergenza. Boll. Unione Mat. Ital. Sez. 14B (1977), 285–299.Google Scholar . J. Differ. Eqns 256 (2014), 157–205.CrossRefGoogle Scholar
. J. Differ. Eqns 256 (2014), 157–205.CrossRefGoogle Scholar