Hostname: page-component-7dd5485656-wjfd9 Total loading time: 0 Render date: 2025-10-22T09:54:05.022Z Has data issue: false hasContentIssue false

Normalized multi-bump solutions of nonlinear Hartree equation with steep potential well

Published online by Cambridge University Press:  20 October 2025

He Zhang
Affiliation:
School of Mathematics and Statistics, Central South University, Changsha, PR China (hehzhang@163.com)
Shuai Yao
Affiliation:
School of Mathematics and Statistics, Shandong University of Technology, Zibo, PR China (shyao2019@163.com)
Haibo Chen*
Affiliation:
School of Mathematics and Statistics, Central South University, Changsha, PR China (math_chb@csu.edu.cn)
*
*Corresponding author.

Abstract

In this paper, we study the existence of solutions to the following Hartree equation

\begin{align*}\begin{cases}-\Delta u+\lambda V(x) u+\mu u=\left(\int_{\mathbb{R}^N}\frac{|u|^p}{|x-y|^{N-\alpha}}\right)|u|^{p-2}u,\ \text{in}\ \mathbb{R}^N,\\\int_{\mathbb{R}^N}|u|^2=\omega,\end{cases}\end{align*}

Where $N\geq 3$, $\omega,\lambda \gt 0$, $p\in \left(\frac{N+\alpha}{N}, \frac{N+\alpha}{N-2}\right)\setminus\left\{\frac{N+\alpha+2}{N}\right\}$ and µ will appear as a Lagrange multiplier. We assume that $0\leq V\in L^{\infty}_{loc}(\mathbb{R}^N)$ has a bottom $int V^{-1}(0)$ composed of $\ell_0$ $(\ell_{0}\geq1)$ connected components $\{\Omega_i\}_{i=1}^{\ell_0}$, where $int V^{-1}(0)$ is the interior of the zero set $V^{-1}(0)=\{x\in\mathbb{R}^N| V(x)=0\}$ of V. It is worth pointing out that the penalization technique is no longer applicable to the local sublinear case $p\in \left(\frac{N+\alpha}{N},2\right)$. Therefore, we develop a new variational method in which the two deformation flows are established that reflect the properties of the potential. Moreover, we find a critical point without introducing a penalization term and give the existence result for $p\in \left(\frac{N+\alpha}{N}, \frac{N+\alpha}{N-2}\right)\setminus\left\{\frac{N+\alpha+2}{N}\right\}$. When ω is fixed and satisfies $\omega^{\frac{-(p-1)}{-Np+N+\alpha+2}}$ sufficiently small, we construct a $\ell$-bump $(1\leq\ell\leq \ell_{0})$ positive normalization solution, which concentrates at $\ell$ prescribed components $\{\Omega_i\}^{\ell}_{i=1}$ for large λ. We also consider the asymptotic profile of the solutions as $\lambda\rightarrow\infty$ and $\omega^{\frac{-(p-1)}{-Np+N+\alpha+2}}\rightarrow 0$.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alves, C. O., Gao, F., Squassina, M. and Yang, M.. Singularly perturbed critical Choquard equations. J. Differ. Equ. 263 (2017), 39433988.CrossRefGoogle Scholar
Bartsch, T., Liu, Y. and Liu, Z.. Normalized solutions for a class of nonlinear Choquard equations. SN Partial Differ. Equ. Appl. 1 (2020), 34.CrossRefGoogle Scholar
Bartsch, T., Molle, R., Rizzi, M. and Verzini, G.. Normalized solutions of mass supercritical Schrödinger equations with potential. Commun. Partial Differ. Equ. 46 (2021), .CrossRefGoogle Scholar
Byeon, J. and Jeanjean, L.. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete Contin. Dyn. Syst. 19 (2007), 255269.CrossRefGoogle Scholar
Cao, P., Wang, J. and Zou, W.. On the standing waves for nonlinear Hartree equation with confining potential. J. Math. Phys. 53 (2012), 22.CrossRefGoogle Scholar
Cazenave, T. and Lions, P. L.. Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85 (1982), .CrossRefGoogle Scholar
Chen, J. and Guo, B.. Strong instability of standing waves for a nonlocal Schrödinger equation. Phys. D. 227 (2007), 142148.CrossRefGoogle Scholar
Cingolani, S., Gallo, M. and Tanaka, K.. Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities. Calc. Var. PDE. 61 (2022), 68.CrossRefGoogle Scholar
Cingolani, S. and Tanaka, K.. Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well. Rev. Mat. Iberoam. 35 (2019), 18851924.CrossRefGoogle Scholar
Cingolani, S. and Tanaka, K.. Ground state solutions for the nonlinear Choquard equation with prescribed mass, INdAM Springer volume: geometric properties for parabolic and elliptic PDEs. Springer INdAM Ser. Vol. 47, pp. 2341 (Springer, Cham, 2021).Google Scholar
Cingolani, S. and Tanaka, K.. Semi-classical analysis around local maxima and saddle points for degenerate nonlinear Choquard equations. J. Geom. Anal. 33 (2023), 316.CrossRefGoogle Scholar
Deng, Y., Lu, L. and Shuai, W.. Constraint minimizers of mass critical Hartree energy functionals: existence and mass concentration. J. Math. Phys. 56 (2015), 061503.CrossRefGoogle Scholar
Ding, Y., Gao, F. and Yang, M.. Semiclassical states for Choquard type equations with critical growth: critical frequency case. Nonlinearity. 33 (2020), 66956728.CrossRefGoogle Scholar
Feng, B.. Sharp threshold of global existence and instability of standing wave for the Schrödinger-Hartree equation with a harmonic potential. Nonlinear Anal. Real World Appl. 31 (2016), 132145.CrossRefGoogle Scholar
Gao, F., Liu, H., Moroz, V. and Yang, M.. High energy positive solutions for a coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents. J. Differ. Equ. 287 (2021), 329375.CrossRefGoogle Scholar
Gao, F. and Yang, M.. A strongly indefinite Choquard equation with critical exponent due to Hardy-Littlewood-Sobolev inequality. Commun. Contemp. Math. 20 (2018), 1750037.CrossRefGoogle Scholar
Gao, Y. and Wang, Z.. Scattering versus blow-up for the focusing L 2-supercritical Hartree equation. Z. Angew. Math. Phys. 65 (2014), 179202.CrossRefGoogle Scholar
Ginibre, J. and Velo, G.. Modified wave operators without loss of regularity for some long-range Hartree equations I. Ann. Henri Poincaré. 15 (2014), 829862.CrossRefGoogle Scholar
Gross, E. P.. Physics of many-particle systems. (Gordon Breach, New York, Vol. 1, 1996).Google Scholar
Guo, L., Hu, T., Peng, S. and Shuai, W.. Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent. Calc. Var. PDE. 58 (2019), 128.CrossRefGoogle Scholar
Guo, Y., Luo, Y. and Wang, Z. -Q.. Limit behavior of mass critical Hartree minimization problems with steep potential wells. J. Math. Phys. 59 (2018), 061504.CrossRefGoogle Scholar
He, X., Radulescu, V. and Zou, W.. Normalized ground states for the critical fractional Choquard equation with a local perturbation. J. Geom. Anal. 32 (2022), 252.CrossRefGoogle Scholar
Hironobu, S.. Small analytic solutions to the Hartree equation. J. Funct. Anal. 271 (2016), 10641090.Google Scholar
Ikoma, N. and Miyamoto, Y.. Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities. Calc. Var. PDE. 59 (2020), 48.CrossRefGoogle Scholar
Jeanjean, L. and Lu, S. -S.. A mass supercritical problem revisited. Calc. Var. PDE. 59 (2020), 174.CrossRefGoogle Scholar
Li, D. and Zhang, X.. On the classification of minimal mass blowup solutions of the focusing mass-critical Hartree equation. Adv. Math. 220 (2009), 11711192.CrossRefGoogle Scholar
Li, G. and Ye, H.. The existence of positive solutions with prescribed L 2-norm for nonlinear Choquard equations. J. Math. Phys. 55 (2014), 121501.CrossRefGoogle Scholar
Lieb, E. H.. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57 (1977), 93105.CrossRefGoogle Scholar
Lieb, E. H. and Loss, M.. Analysis, second edition. Graduate Studies in Mathematics, Vol.14, (American Mathematical Society, Providence, RI, 2001) vol.Google Scholar
Lions, P. L.. The Choquard equation and related questions. Nonlinear Anal. 4 (1980), 10631073.CrossRefGoogle Scholar
Lions, P. L.. The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non LinéAire. 1 (1984), 223283.CrossRefGoogle Scholar
Liu, S. and Chen, H.. Pohozaev-type ground state solutions for Choquard equation with singular potential and critical exponent. Topol. Methods Nonlinear Anal. 59 (2022), 10691090.Google Scholar
Luo, X.. Normalized standing waves for the Hartree equations. J. Differ. Equ. 267 (2019), 44934524.CrossRefGoogle Scholar
Miao, C., Xu, G. and Zhao, L.. Global well-posedness and scattering for the defocussing H 1-subcritical Hartree equation in $\mathbb{R}^d$. Ann. Inst. Henri Poincaré, Anal. Non LinéAire. 26 (2009), 18311852.CrossRefGoogle Scholar
Moroz, V. and Van Schaftingen, J.. Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265 (2013), 153184.CrossRefGoogle Scholar
Moroz, V. and Van Schaftingen, J.. Existence of groundstates for a class of nonlinear Choquard equations. Trans. Amer. Math. Soc. 367 (2015), 65576579.CrossRefGoogle Scholar
Moroz, V. and Van Schaftingen, J.. A guide to the Choquard equation. J. Fixed Point Theory Appl. 19 (2017), 773813.CrossRefGoogle Scholar
Pekar, S.. Untersuchungüber die Elektronentheorie der Kristalle. (Akademie Verlag, Berlin, 1954).CrossRefGoogle Scholar
Peng, X. and Rizzi, M.. Normalized solutions of mass supercritical Schrödinger-Poisson equation with potential, Calc. Var. PDE. 64 (2025), 152.Google Scholar
Penrose, R.. On gravity’s role in quantum state reduction. Gen. Rel. Grav. 28 (1996), 581600.CrossRefGoogle Scholar
Su, Y. and Liu, S.. Ground state solutions for critical Choquard equation with singular potential: existence and regularity. J. Fixed Point Theory Appl. 25 (2023), 23.CrossRefGoogle Scholar
Su, Y. and Shi, H.. Quasilinear Choquard equation with critical exponent. J. Math. Anal. Appl. 508 (2022), 18.CrossRefGoogle Scholar
Tang, Z., Zhang, C., Zhang, L. and Zhou, L.. Normalized multibump solutions to nonlinear Schrödinger equations with steep potential well. Nonlinearity. 35 (2022), 46244658.CrossRefGoogle Scholar
Wang, Y.. Strong instability of standing waves for Hartree equation with harmonic potential. Phys. D. 237 (2007), 9981005.CrossRefGoogle Scholar
Wei, J. and Winter, M.. Strongly interacting bumps for the Schrödinger-Newton equation. J. Math. Phys. 50 (2009), 012905.CrossRefGoogle Scholar
Xia, J. and Zhang, X.. Normalized saddle solutions for a mass supercritical Choquard equation. J. Differ. Equ. 364 (2023), 471497.CrossRefGoogle Scholar
Yang, J. and Zhu, L.. Multiple solutions to Choquard equation in exterior domain. J. Math. Anal. Appl. 507 (2022), 125726.CrossRefGoogle Scholar
Yang, M. and Ding, Y.. Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part. Commun. Pure Appl. Anal. 12 (2013), 771783.CrossRefGoogle Scholar
Yao, S., Chen, H., DRădulescu, V. and Sun, J.. Normalized solutions for lower critical Choquard equations with critical Sobolev perturbation. SIAM J. Math. Anal. 54 (2022), 36963723.CrossRefGoogle Scholar
Yao, S., Sun, J. and Wu, T. Positive solutions to a class of Choquard type equations with a competing perturbation. J. Math. Anal. Appl. 516 (2022), 126469.CrossRefGoogle Scholar
Ye, H.. Mass minimizers and concentration for nonlinear Choquard equations in $\mathbb{R}^N$. Topol. Methods Nonlinear Anal. 48 (2016), 393417.Google Scholar
Yu, M. and Chen, H.. Multibump positive solutions for Choquard equation with double potential in $\mathbb{R}^3$. Math. Meth. Appl. Sci. 46 (2023), 1429914320.CrossRefGoogle Scholar
Zhang, C. and Zhang, X.. Normalized multi-bump solutions of nonlinear Schrödinger equations via variational approach. Calc. Var. PDE. 61 (2022), 57.CrossRefGoogle Scholar
Zhang, H. and Zhang, F.. Multiplicity and concentration of solutions for Choquard equations with critical growth. J. Math. Anal. Appl. 481 (2020), 123457.CrossRefGoogle Scholar