BackgroundSchizophrenia progresses through high-risk, first-episode, and chronic stages, each associated with altered spontaneous brain activity. Resting state functional MRI studies highlight these changes, but inconsistencies persist, and the genetic basis remains unclear.
MethodsA neuroimaging meta-analysis was conducted to assess spontaneous brain activity alterations in each schizophrenia stage. The largest available genome-wide association study (GWAS) summary statistics for schizophrenia (N = 53,386 cases, 77,258 controls) were used, followed by Hi-C-coupled multimarker analysis of genomic annotation (H-MAGMA) to identify schizophrenia-associated genes. Transcriptome-neuroimaging association and gene prioritization analyses were performed to identify genes consistently linked to brain activity alterations. Biological relevance was explored by functional enrichment.
ResultsFifty-two studies met the inclusion criteria, covering the high-risk (Nhigh-risk = 409, Ncontrol = 475), first-episode (Ncase = 1842, Ncontrol = 1735), and chronic (Ncase = 1242, Ncontrol = 1300) stages. High-risk stage showed reduced brain activity in the right median cingulate and paracingulate gyri. First-episode stage revealed increased activity in the right putamen and decreased activity in the left gyrus rectus and right postcentral gyrus. Chronic stage showed heightened activity in the right inferior frontal gyrus and reduced activity in the superior occipital gyrus and right postcentral gyrus. Across all stages, 199 genes were consistently linked to brain activity changes, involved in biological processes such as nervous system development, synaptic transmission, and synaptic plasticity.
ConclusionsBrain activity alterations across schizophrenia stages and genes consistently associated with these changes highlight their potential as universal biomarkers and therapeutic targets for schizophrenia.