Skip to main content Accessibility help
Hostname: page-component-747cfc64b6-fkkrz Total loading time: 0.23 Render date: 2021-06-16T09:09:21.852Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Estimating energy expenditure of head-hauling water and grain grinding from heart rate monitor measurements in northern Mozambique

Published online by Cambridge University Press:  02 July 2020

Kory C Russel
Department of Landscape Architecture, University of Oregon, Eugene, OR 97403, USA Environmental Studies Program, University of Oregon, Eugene, OR 97403, USA
Matthew P Buman
School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
Jennifer Davis
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
William L Haskell
Department of Medicine (Emeritus), Stanford University, Stanford, CA 94305, USA
E-mail address:



Even though sub-Saharan African women spend millions of person-hours per day fetching water and pounding grain, to date, few studies have rigorously assessed the energy expenditure costs of such domestic activities. As a result, most analyses that consider head-hauling water or hand pounding of grain with a mortar and pestle (pilão use) employ energy expenditure values derived from limited research. The current paper compares estimated energy expenditure values from heart rate monitors v. indirect calorimetry in order to understand some of the limitations with using such monitors to measure domestic activities.


This confirmation study estimates the metabolic equivalent of task (MET) value for head-hauling water and hand-pounding grain using both indirect calorimetry and heart rate monitors under laboratory conditions.


The study was conducted in Nampula, Mozambique.


Forty university students in Nampula city who recurrently engaged in water-fetching activities.


Including all participants, the mean MET value for head hauling 20 litres (20·5 kg, including container) of water (2·7 km/h, 0 % slope) was 4·3 (sd 0·9) and 3·7 (sd 1·2) for pilão use. Estimated energy expenditure predictions from a mixed model were found to correlate with observed energy expenditure (r2 0·68, r 0·82). Re-estimating the model with pilão use data excluded improved the fit substantially (r2 0·83, r 0·91).


The current study finds that heart rate monitors are suitable instruments for providing accurate quantification of energy expenditure for some domestic activities, such as head-hauling water, but are not appropriate for quantifying expenditures of other activities, such as hand-pounding grain.

Research paper
© The Authors 2020

Access options

Get access to the full version of this content by using one of the access options below.


James, WP (2009) WHO recognition of the global obesity epidemic. Int J Obes (Lond) 32, Suppl. 7, S120S126.10.1038/ijo.2008.247CrossRefGoogle Scholar
Afshin, A, Forouzanfar, MH, Reitsma, MB et al. (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377, 1327.Google ScholarPubMed
Dugas, LR, Harders, R, Merrill, S et al. (2011) Energy expenditure in adults living in developing compared with industrialized countries: a meta-analysis of doubly labeled water studies. Am J Clin Nutr 93, 427441.10.3945/ajcn.110.007278CrossRefGoogle ScholarPubMed
Food and Agriculture Organization (2004) Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation. Rome, Italy: FAO.Google Scholar
Blackden, CM & Wodon, Q (2006) Gender, Time Use, and Poverty in Sub-Saharan Africa. Washington, DC: The World Bank.10.1037/e602512012-001CrossRefGoogle Scholar
Ainsworth, BE, Haskell, WL, Herrmann, SD et al. (2011) 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc 43, 15751581.10.1249/MSS.0b013e31821ece12CrossRefGoogle ScholarPubMed
Ainsworth, BE (2000) Issues in the assessment of physical activity in women. Res Q Exerc Sport 71, S37S42.10.1080/02701367.2000.11082784CrossRefGoogle ScholarPubMed
Ainsworth, BE, Irwin, ML, Addy, CL et al. (1999) Moderate physical activity patterns of minority women: the Cross-Cultural Activity Participation Study. J Womens Health 8, 805813.Google ScholarPubMed
Prentice, AM (2006) The emerging epidemic of obesity in developing countries. Int J Epidemiol 35, 9399.10.1093/ije/dyi272CrossRefGoogle ScholarPubMed
Clarke, B & Rottger, A (2006) Small Mills in Africa: Selection, Installation and Operation of Equipment. Rome, Italy: FAO.Google Scholar
United Nations Development Programme (2006) Human Development Report 2006. Beyond Scarcity: Power, Poverty and the Global Water Crisis. New York: UNDP.Google Scholar
Vaz, M, Karaolis, N, Draper, A et al. (2005) A compilation of energy costs of physical activities. Public Health Nutr 8, 11531183.10.1079/PHN2005802CrossRefGoogle ScholarPubMed
Leonard, WR (2012) Laboratory and field methods for measuring human energy expenditure. Am J Hum Biol 24, 372384.10.1002/ajhb.22260CrossRefGoogle ScholarPubMed
Ndahimana, D & Kim, EK (2017) Measurement methods for physical activity and energy expenditure: a review. Clin Nutr Res 6 ,6880.10.7762/cnr.2017.6.2.68CrossRefGoogle ScholarPubMed
Bharathi, AV, Kuriyan, R, Kurpad, AV et al. (2010) Assessment of physical activity using accelerometry, an activity diary, the heart rate method and the Indian migration study questionnaire in south Indian adults. Public Health Nutr 13, 4753.10.1017/S1368980009005850CrossRefGoogle ScholarPubMed
Brage, S, Ekelund, U, Brage, N et al. (2007) Hierarchy of individual calibration levels for heart rate and accelerometry to measure physical activity. J Appl Physiol (1985) 103, 682692.10.1152/japplphysiol.00092.2006CrossRefGoogle ScholarPubMed
Ceesay, SM, Prentice, AM, Day, KC et al. (1989) The use of heart rate monitoring in the estimation of energy expenditure: a validation study using indirect whole-body calorimetry. Br J Nutr 61, 175186.10.1079/BJN19890107CrossRefGoogle ScholarPubMed
Hailstone, J & Kilding, AE (2011) Reliability and validity of the Zephyr™ BioHarness™ to measure respiratory responses to exercise. Meas Phys Educ Exerc Sci 15, 293300.10.1080/1091367X.2011.615671CrossRefGoogle Scholar
Johnstone, JA, Ford, PA, Hughes, G et al. (2012) Field based reliability and validity of the BioHarness multivariable monitoring device. J Sports Sci Med 11, 643652.Google Scholar
Keytel, LR, Goedecke, JH, Noakes, TD et al. (2005) Prediction of energy expenditure from heart rate monitoring during submaximal exercise. J Sports Sci 23, 289297.10.1080/02640410470001730089CrossRefGoogle ScholarPubMed
Kim, JH, Roberge, R, Powell, JB et al. (2013) Measurement accuracy of heart rate and respiratory rate during graded exercise and sustained exercise in the heat using the Zephyr BioHarness. Int J Sports Med 34, 497501.Google ScholarPubMed
Rennie, KL, Hennings, SJ, Mitchell, J et al. (2001) Estimating energy expenditure by heart-rate monitoring without individual calibration. Med Sci Sports Exerc 33, 939945.10.1097/00005768-200106000-00013CrossRefGoogle ScholarPubMed
Spurr, GB, Prentice, AM, Murgatroyd, PR et al. (1988) Energy expenditure from minute-by-minute heart-rate recording: comparison with indirect calorimetry. Am J Clin Nutr 48, 552559.10.1093/ajcn/48.3.552CrossRefGoogle ScholarPubMed
Ueno, S, Ikeda, K & Tai, T (2014) Metabolic rate prediction in young and old men by heart rate, ambient temperature, weight and body fat percentage. J Occup Health 56, 519525.10.1539/joh.14-0063-BRCrossRefGoogle Scholar
Schrack, JA, Zipunnikov, V, Goldsmith, J et al. (2014) Estimating energy expenditure from heart rate in older adults: a case for calibration. PLOS ONE 9, e93520.10.1371/journal.pone.0093520CrossRefGoogle ScholarPubMed
Bassett, DR & Howley, ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32, 7084.10.1097/00005768-200001000-00012CrossRefGoogle ScholarPubMed
Welk, G (2002) Physical Activity Assessments for Health-Related Research. Champaign, IL, USA: Human Kinetics.Google Scholar
Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (JMP) (2014) Progress on Drinking Water and Sanitation: 2014 Update. Geneva, Switzerland: World Health Organization.Google Scholar
Byerlee, D & Eicher, C (1997) Africa’s Emerging Maize Revolution. Boulder, London: Lynne Rienner.Google Scholar
American College of Sports Medicine (2014) Guidelines for Exercise Testing and Prescription. Baltimore: Wolters Kluwer Health, Lippincott Williams & Wilkins.Google Scholar
Taylor-Piliae, RE, Fair, JM, Haskell, WL et al. (2010) Validation of the Stanford Brief Activity Survey: examining psychological factors and physical activity levels in older adults. J Phys Act Health 7, 8794.10.1123/jpah.7.1.87CrossRefGoogle ScholarPubMed
Food and Agriculture Organization (2011) Nutrition Country Profile Republic of Mozambique. Rome, Italy: FAO.Google Scholar
Gomes, A, Damasceno, A, Azevedo, A et al. (2010) Body mass index and waist circumference in Mozambique: urban/rural gap during epidemiological transition. Obes Rev 11, 627634.10.1111/j.1467-789X.2010.00739.xCrossRefGoogle ScholarPubMed
Rao, S, Gokhale, M & Kanade, A (2008) Energy costs of daily activities for women in rural India. Public Health Nutr 11, 142150.10.1017/S1368980007000055CrossRefGoogle ScholarPubMed
Hills, AP, Mokhtar, N & Byrne, NM (2014) Assessment of physical activity and energy expenditure: an overview of objective measures. Front Nutr 1, 5.10.3389/fnut.2014.00005CrossRefGoogle ScholarPubMed
Swartz, AM, Strath, SJ, Bassett, DR et al. (2000) Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Med Sci Sports Exerc 32, S450S456.10.1097/00005768-200009001-00003CrossRefGoogle ScholarPubMed
Spurr, GB (1990) Physical activity and energy expenditure in undernutrition. Prog Food Nutr Sci 14, 139192.Google ScholarPubMed
Gardner, GW, Edgerton, VR, Senewiratne, B et al. (1977) Physical work capacity and metabolic stress in subjects with iron deficiency anemia. Am J Clin Nutr 30, 910917.10.1093/ajcn/30.6.910CrossRefGoogle ScholarPubMed
Hinton, PS, Giordano, C, Brownlie, T et al. (2000) Iron supplementation improves endurance after training in iron-depleted, nonanemic women. J Appl Physiol (1985) 88, 11031111.10.1152/jappl.2000.88.3.1103CrossRefGoogle ScholarPubMed
Haas, JD & Brownlie, T (2001) Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr 131, 676S688S; discussion 688S-690S.10.1093/jn/131.2.676SCrossRefGoogle ScholarPubMed
Instituto Nacional de Estatística (INE), Ministério da Saúde (MISAU); Maputo, M (2013) Moçambique: Inquérito Demográfico e de Saúde 2011 (Demographic and Health Survey). Calverton, MD: MISA/Moçambique, INE/Moçambique and ICF International.Google Scholar
Brun, TA, Geissler, CA, Mirbagheri, I et al. (1979) The energy expenditure of Iranian agricultural workers. Am J Clin Nutr 32, 21542161.10.1093/ajcn/32.10.2154CrossRefGoogle ScholarPubMed
Brun, T, Bleiberg, F & Goihman, S (1981) Energy expenditure of male farmers in dry and rainy seasons in Upper-Volta. Br J Nutr 45, 6775.10.1079/BJN19810077CrossRefGoogle ScholarPubMed
Kassebaum, NJ, Jasrasaria, R, Naghavi, M et al. (2014) A systematic analysis of global anemia burden from 1990 to 2010. Blood 123, 615624.10.1182/blood-2013-06-508325CrossRefGoogle ScholarPubMed
Supplementary material: File

Russel et al. supplementary material

Russel et al. supplementary material

Download Russel et al. supplementary material(File)
File 40 KB

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Estimating energy expenditure of head-hauling water and grain grinding from heart rate monitor measurements in northern Mozambique
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Estimating energy expenditure of head-hauling water and grain grinding from heart rate monitor measurements in northern Mozambique
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Estimating energy expenditure of head-hauling water and grain grinding from heart rate monitor measurements in northern Mozambique
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *