Skip to main content
×
×
Home

Apple intake and cancer risk: a systematic review and meta-analysis of observational studies

  • Roberto Fabiani (a1), Liliana Minelli (a2) and Patrizia Rosignoli (a1)
Abstract
Objective

Conflicting results on the association between fruit consumption and cancer risk have been reported. Little is known about the cancer preventive effects of different fruit types. The present meta-analysis investigates whether an association exists between apple intake and cancer risk.

Design

Relevant observational studies were identified by literature search (PubMed, Web of Science and Embase). A random-effect model was used to estimate the cancer risk in different anatomical sites. Between-study heterogeneity and publication bias were assessed using adequate statistical tests.

Results

Twenty case–control (three on lung, five on colorectal, five on breast, two on oesophageal, three on oral cavity, two on prostate and one each on pancreas, bladder, larynx, ovary, kidney and brain cancer) and twenty-one cohort (seven on lung, two on colorectal, three on breast and one each on oesophageal, pancreas, bladder, kidney, endometrial, head–neck, urothelial and stomach cancer) studies met the inclusion criteria. Comparing the highest v. lowest level of apple consumption, the reduction of lung cancer risk was statistically highly significant in both case–control (OR=0·75; 95% CI 0·63, 0·88; P=0·001, I 2=0 %) and cohort studies (relative risk=0·89; 95% CI 0·84, 0·94; P<0·001, I 2=53 %). Instead, in the case of colorectal (OR=0·66; 95% CI 0·54, 0·81; P<0·001, I 2=55%), breast (OR=0·79; 95% CI 0·73, 0·87; P<0·001, I 2=1 %) and overall digestive tract (OR=0·50; 95% CI 0·36, 0·69; P<0·001, I 2=90 %) cancers a significant preventive effect of apples was found only in case–control studies while prospective studies indicated no effect. No evidence of publication bias could be detected for colorectal, oral cavity, oesophageal and breast cancer. However, some confounding effects may be present and related to the consumption of other fruit which have not been considered as adjusting factors.

Conclusions

The present meta-analysis indicates that consumption of apples is associated with a reduced risk of cancer in different anatomical sites.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Apple intake and cancer risk: a systematic review and meta-analysis of observational studies
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Apple intake and cancer risk: a systematic review and meta-analysis of observational studies
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Apple intake and cancer risk: a systematic review and meta-analysis of observational studies
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: Email roberto.fabiani@unipg.it
References
Hide All
1. Ferlay, J, Soerjomataram, I, Ervik, M et al. (2013) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. Lyon: International Agency for Research on Cancer; available at http://globocan.iarc.fr
2. Vineis, P & Wild, CP (2014) Global cancer patterns: causes and prevention. Lancet 383, 549557.
3. Willett, WC (1995) Diet, nutrition, and avoidable cancer. Environ Health Perspect 103, 165170.
4. Liu, RH (2013) Health-promoting components of fruits and vegetables in the diet. Adv Nutr 4, issue 3, 384S392S.
5. Norat, T, Aune, D, Chan, D et al. (2014) Fruits and vegetables: updating the epidemiologic evidence for the WCRF/AICR lifestyle recommendations for cancer prevention. Cancer Treat Res 159, 3550.
6. World Cancer Research Fund/American Institute for Cancer Research (2007) Food, Nutrition and the Prevention of Cancer: A Global Perspective . Washington, DC: American Institute for Cancer Research.
7. Hyson, DA (2011) A comprehensive review of apples and apple components and their relationship to human health. Adv Nutr 2, 408420.
8. Stroup, DF, Berlin, JA, Morton, SC et al. (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283, 20082012.
9. Wells, GA, Shea, B, O’Connell, D et al. (2014) The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed July 2015).
10. Askari, F, Parizi, MK, Jessri, M et al. (2014) Fruit and vegetable intake in relation to prostate cancer in Iranian men: a case–control study. Asian Pac J Cancer Prev 15, 52235227.
11. Tarrazo-Antelo, AM, Ruano-Ravina, A, Abal Arca, J et al. (2014) Fruit and vegetable consumption and lung cancer risk: a case–control study in Galicia, Spain. Nutr Cancer 66, 10301037.
12. Bao, PP, Shu, XO, Zheng, Y et al. (2012) Fruit, vegetable, and animal food intake and breast cancer risk by hormone receptor status. Nutr Cancer 64, 806819.
13. Rossi, M, Lugo, A, Lagiou, P et al. (2012) Proanthocyanidins and other flavonoids in relation to pancreatic cancer: a case–control study in Italy. Ann Oncol 23, 14881493.
14. Annema, N, Heyworth, JS, McNaughton, SA et al. (2011) Fruit and vegetable consumption and the risk of proximal colon, distal colon, and rectal cancers in a case–control study in Western Australia. J Am Diet Assoc 111, 14791490.
15. Hajizadeh, B, Jessri, M, Moasheri, SM et al. (2011) Fruits and vegetables consumption and esophageal squamous cell carcinoma: a case–control study. Nutr Cancer 63, 707713.
16. Jedrychowski, W, Maugeri, U, Popiela, T et al. (2010) Case–control study on beneficial effect of regular consumption of apples on colorectal cancer risk in a population with relatively low intake of fruits and vegetables. Eur J Cancer Prev 19, 4247.
17. Kubik, A, Zatloukal, P, Tomasek, L et al. (2008) A case–control study of lifestyle and lung cancer associations by histological types. Neoplasma 55, 192199.
18. Di Pietro, PF, Medeiros, NI, Vieira, FG et al. (2007) Breast cancer in southern Brazil: association with past dietary intake. Nutr Hosp 22, 565572.
19. Sacerdote, C, Matullo, G, Polidoro, S et al. (2007) Intake of fruits and vegetables and polymorphisms in DNA repair genes in bladder cancer. Mutagenesis 22, 281285.
20. Theodoratou, E, Kyle, J, Cetnarskyj, R et al. (2007) Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 16, 684693.
21. Kreimer, AR, Randi, G, Herrero, R et al. (2006) Diet and body mass, and oral and oropharyngeal squamous cell carcinomas: analysis from the IARC multinational case–control study. Int J Cancer 118, 22932297.
22. Gallus, S, Talamini, R, Giacosa, A et al. (2005) Does an apple a day keep the oncologist away? Ann Oncol 16, 18411844.
23. Malin, AS, Qi, D, Shu, XO et al. (2003) Intake of fruits, vegetables and selected micronutrients in relation to the risk of breast cancer. Int J Cancer 105, 413418.
24. Rajkumar, T, Sridhar, H, Balaram, P et al. (2003) Oral cancer in Southern India: the influence of body size, diet, infections and sexual practices. Eur J Cancer Prev 12, 135143.
25. Le Marchand, L, Murphy, SP, Hankin, JH et al. (2000) Intake of flavonoids and lung cancer. J Natl Cancer Inst 92, 154160.
26. Torres-Sánchez, L, López-Carrillo, L, López-Cervantes, M et al. (2000) Food sources of phytoestrogens and breast cancer risk in Mexican women. Nutr Cancer 37, 134139.
27. Lindblad, P, Wolk, A, Bergström, R et al. (1997) Diet and risk of renal cell cancer: a population-based case–control study. Cancer Epidemiol Biomarkers Prev 6, 215223.
28. Deneo-Pellegrini, H, De Stefani, E & Ronco, A (1996) Vegetables, fruits, and risk of colorectal cancer: a case–control study from Uruguay. Nutr Cancer 25, 297304.
29. Giles, GG, McNeil, JJ, Donnan, G et al. (1994) Dietary factors and the risk of glioma in adults: results of a case–control study in Melbourne, Australia. Int J Cancer 59, 357362.
30. Boggs, DA, Palmer, JR, Wise, LA et al. (2010) Fruit and vegetable intake in relation to risk of breast cancer in the Black Women’s Health Study. Am J Epidemiol 172, 12681279.
31. Kabat, GC, Park, Y, Hollenbeck, AR et al. (2010) Intake of fruits and vegetables, and risk of endometrial cancer in the NIH–AARP Diet and Health Study. Cancer Epidemiol 34, 568573.
32. Büchner, FL, Bueno-de-Mesquita, HB, Linseisen, J et al. (2010) Fruits and vegetables consumption and the risk of histological subtypes of lung cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Causes Control 21, 357371.
33. Büchner, FL, Bueno-de-Mesquita, HB, Ros, MM et al. (2009) Consumption of vegetables and fruit and the risk of bladder cancer in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 125, 26432651.
34. Wang, L, Lee, IM, Zhang, SM et al. (2009) Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am J Clin Nutr 89, 905912.
35. Freedman, ND, Park, Y, Subar, AF et al. (2008) Fruit and vegetable intake and head and neck cancer risk in a large United States prospective cohort study. Int J Cancer 122, 23302336.
36. Wright, ME, Park, Y, Subar, AF et al. (2008) Intakes of fruit, vegetables, and specific botanical groups in relation to lung cancer risk in the NIH–AARP Diet and Health Study. Am J Epidemiol 168, 10241034.
37. Freedman, ND, Park, Y, Subar, AF et al. (2007) Fruit and vegetable intake and esophageal cancer in a large prospective cohort study. Int J Cancer 121, 27532760.
38. Linseisen, J, Rohrmann, S, Miller, AB et al. (2007) Fruit and vegetable consumption and lung cancer risk: updated information from the European Prospective Investigation into Cancer and Nutrition (EPIC). Int J Cancer 121, 11031114.
39. Lin, J, Zhang, SM, Wu, K et al. (2006) Flavonoid intake and colorectal cancer risk in men and women. Am J Epidemiol 164, 644651.
40. Adebamowo, CA, Cho, E, Sampson, L et al. (2005) Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. Int J Cancer 114, 628633.
41. Rashidkhani, B, Lindblad, P & Wolk, A (2005) Fruits, vegetables and risk of renal cell carcinoma: a prospective study of Swedish women. Int J Cancer 113, 451455.
42. Knekt, P, Kumpulainen, J, Järvinen, R et al. (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76, 560568.
43. Arts, IC, Hollman, PC, Bueno De Mesquita, HB et al. (2001) Dietary catechins and epithelial cancer incidence: the Zutphen elderly study. Int J Cancer 92, 298302.
44. Zeegers, MP, Goldbohm, RA & van den Brandt, PA (2001) Consumption of vegetables and fruits and urothelial cancer incidence: a prospective study. Cancer Epidemiol Biomarkers Prev 10, 11211128.
45. Feskanich, D, Ziegler, RG, Michaud, DS et al. (2000) Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. J Natl Cancer Inst 92, 18121823.
46. Botterweck, AA, van den Brandt, PA & Goldbohm, RA (1998) A prospective cohort study on vegetable and fruit consumption and stomach cancer risk in The Netherlands. Am J Epidemiol 148, 842853.
47. Smith-Warner, SA, Spiegelman, D, Yaun, SS et al. (2001) Intake of fruits and vegetables and risk of breast cancer: a pooled analysis of cohort studies. JAMA 285, 769776.
48. Smith-Warner, SA, Spiegelman, D, Yaun, SS et al. (2003) Fruits, vegetables and lung cancer: a pooled analysis of cohort studies. Int J Cancer 107, 10011011.
49. Koushik, A, Hunter, DJ, Spiegelman, D et al. (2007) Fruits, vegetables, and colon cancer risk in a pooled analysis of 14 cohort studies. J Natl Cancer Inst 99, 14711483.
50. Koushik, A, Spiegelman, D, Albanes, D et al. (2012) Intake of fruits and vegetables and risk of pancreatic cancer in a pooled analysis of 14 cohort studies. Am J Epidemiol 176, 373386.
51. Riboli, E & Norat, T (2003) Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am J Clin Nutr 78, 3 Suppl., 559S569S.
52. Kaaks, R & Riboli, E (2005) Epidemiologic studies of nutrition and cancer: let us not throw out the baby with the bath water. Int J Cancer 116, 662664.
53. Jung, S, Spiegelman, D, Baglietto, L et al. (2013) Fruit and vegetable intake and risk of breast cancer by hormone receptor status. J Natl Cancer Inst 105, 219236.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Fabiani supplementary material
Tables S1 and S2

 Word (104 KB)
104 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed