Skip to main content Accessibility help
×
×
Home

Assessment of the accuracy of nutrient calculations of five popular nutrition tracking applications

  • Carly Griffiths (a1), Lisa Harnack (a1) and Mark A Pereira (a1)

Abstract

Objective

To assess the accuracy of nutrient intake calculations from leading nutrition tracking applications (apps).

Design

Nutrient intake estimates from thirty 24 h dietary recalls collected using Nutrition Data System for Research (NDSR) were compared with intake calculations from these recalls entered by the researcher into five free nutrition tracking apps. Apps were selected from the Apple App Store based on consumer popularity from the list of free ‘Health and Fitness’ apps classified as a nutrition tracking apps.

Subjects

Dietary recall data collected from thirty lower-income adults.

Results

Correlations between nutrient intake calculations from NDSR and the nutrition tracking apps ranged from 0·73 to 0·96 for energy and macronutrients. Correlations for the other nutrients examined (Na, total sugars, fibre, cholesterol, saturated fat) ranged from 0·57 to 0·93. For each app, one or more mean nutrient intake calculations were significantly lower than those from NDSR. These differences included total protein (P=0·03), total fat (P=0·005), Na (P=0·02) and cholesterol (P=0·005) for MyFitnessPal; dietary fibre (P=0·04) for Fitbit; total protein (P=0·0004), total fat (P=0·008), Na (P=0·002), sugars (P=0·007), cholesterol (P=0·0006) and saturated fat (P=0·005) for Lose It!; Na (P=0·03) and dietary fibre (P=0·005) for MyPlate; and total fat (P=0·03) for Lifesum.

Conclusions

Findings suggest that nutrient calculations from leading nutrition tracking apps tend to be lower than those from NDSR, a dietary analysis software developed for research purposes. Further research is needed to evaluate the validity of the apps when foods consumed are entered by consumers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Assessment of the accuracy of nutrient calculations of five popular nutrition tracking applications
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Assessment of the accuracy of nutrient calculations of five popular nutrition tracking applications
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Assessment of the accuracy of nutrient calculations of five popular nutrition tracking applications
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email griff902@umn.edu

References

Hide All
1. IMS Institute for Healthcare Informatics (2015) Patient Adoption of mHealth: Use, Evidence, and Barriers to Mainstream Acceptance. Parsippany, NJ: IMS Institute for Healthcare Informatics.
2. Smith, A (2015) US Smartphone Use in 2015. http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/ (accessed March 2017).
3. IMS Institute for Healthcare Informatics (2015) IMS Health Study: Patient Options Expand as Mobile Healthcare Apps Adress Wellness and Chronic Disease Treatment Needs. Parsippany, NJ: IMS Institute for Healthcare Informatics.
4. Suceda, AF, Frederico, C, Pellechia, K et al. (2016) Results of the Academy of Nutrition and Dietetics’ Consumer Health Informatics Work Group’s 2015 member app techonology survey. J Acad Nutr Diet 166, 13361338.
5. Chen, J, Lieffers, A, Bauman, R et al. (2017) The use of smartphone health apps and other mobile health (mHealth) technologies in dietetic practice: a three country study. J Hum Nutr Diet 30, 439452.
6. Schoeppe, S, Alley, S, Rebar, AL et al. (2017) Apps to improve diet, physical activity and sedentary behaviour in children and adolescents: a review of quality, features and behaviour change techniques. Int J Behav Nutr Phys Act 14, 83.
7. Darby, A, Strum, MW, Holmes, E et al. (2016) A review of nutritional tracking mobile applications for diabetes patient use. Diabetes Technol Ther 18, 200212.
8. Chen, J, Cade, JE & Allman-Farinelli, M (2015) The most popular smartphone apps for weight loss: a quality assessment. JMIR Mhealth Uhealth 3, e104.
9. Carter, MC, Burley, VJ, Nykjaer, C et al. (2013) Adherence to a smartphone application for weight loss compared to website and paper diary: pilot randomized controlled trial. J Med Internet Res 15, e32.
10. Coughlin, SS, Whitehead, M, Sheats, JQ et al. (2015) Smartphone applications for promoting healthy diet and nutrition: a literature review. Jacobs J Food Nutr 2, 021.
11. McNutt, S, Zimmerman, T & Colaiezzi, B (2017) Computer-assisted dietary assessment methods. In Advances in the Assessment of Dietary Intake, pp. 4566 [D Schoeller and M Westerterp-Plantenga, editors]. Boca Raton, FL: CRC Press.
12. Rangan, AM, O’Connor, S, Giannelli, V et al. (2015) Electronic Dietary Intake Assessment (e-DIA): comparison of a mobile phone digital entry app for dietary data collection with 24-hour dietary recalls. JMIR Mhealth Uhealth 3, e98.
13. Carter, MC, Burley, VJ, Nykjaer, C et al. (2013) ‘My Meal Mate’ (MMM): validation of the diet measures captured on a smartphone application to facilitate weight loss. Br J Nutr 109, 539546.
14. US Department of Health and Human Services Food and Drug Administration, Center for Devices and Radiological Health & Center for Biologics Evaluation and Research (2015) Mobile Medical Applications: Guidance for Industry and Food and Drug Administration Staff. http://www.fda.gov/downloads/MedicalDevices/.../UCM263366.pdf (accessed September 2016).
15. Harnack, L, Oakes, JM, Elbel, B et al. (2016) Effects of subsidies and prohibitions on nutrition in a food benefit program: a randomized clinical trial. JAMA Intern Med 176, 16101618.
16. Dennis, BE, Ernst, N, Hjortland, M et al. (1980) The NHLBI nutrition data system. J Am Diet Assoc 77, 641647.
17. Schakel, S, Sievert, Y & Buzzard, M (1988) Sources of data for developing and maintaining a nutrient database. J Am Diet Assoc 88, 12681271.
18. Schakel, S, Buzzard, I & Gebhardt, S (1997) Procedures for estimating nutrient values for food composition databases. J Food Compost Anal 10, 102114.
19. Schakel, S (2001) Maintaining a nutrient database in a changing marketplace: keeping pace with changing food products – a research perspective. J Food Compost Anal 14, 315322.
20. Buzzard, MF & Feskanich, D (1987) Maintaining a food composition data base for multiple research studies: the NCC food table. In Food Composition Data: A User’s Perspective, pp. 115122 [WM Rand, CT Windham, BW Wyse et al., editors]. Tokyo: The United Nations University.
21. Willett, W (2013) Nutritional Epidemiology, 3rd ed. New York: Oxford University Press.
22. Illner, A, Freisling, H, Boeing, H et al. (2012) Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. Int J Epidemiol 41, 11871203.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed