Skip to main content
×
×
Home

Association between pre-pregnancy weight status and maternal micronutrient status in early pregnancy

  • Judith M Scholing (a1) (a2), Margreet R Olthof (a2), Femkje AM Jonker (a3) and Tanja GM Vrijkotte (a1)
Abstract
Objective

Inadequate maternal micronutrient status during pregnancy can lead to short- and long-term health risks for mother and offspring. The present study investigated the association between pre-pregnancy weight status and micronutrient status during pregnancy.

Design

Maternal blood samples were collected during early pregnancy (median 13, interquartile range 12–15 weeks) and were assayed for serum folate, ferritin, Fe and vitamin B12. Regression modelling was used to assess the association between pre-pregnancy underweight, normal weight, overweight and obesity, and micronutrient levels, as well as the odds for deficiencies.

Setting

The Amsterdam Born Children and their Development (ABCD) study, the Netherlands.

Subjects

Women with singleton pregnancies without diabetes (n 4243).

Results

After adjustment for covariates, overweight women and obese women had lower (β; 95 % CI) folate (−1·2; −2·2, −0·2 and −2·3; −4·0, −0·7 nmol/l, respectively) and Fe (−1·7; −2·3, −1·1 and −3·6; −4·7, −2·6 μmol/l, respectively) levels than women with normal weight. Furthermore, overweight women had 6 % (95 % CI −9, −3 %) and obese women had 15 % (−19, −10 %), lower vitamin B12 levels, and obese women had 19 % (6, 32 %) higher ferritin levels, than normal-weight women. Obese women had higher odds (OR; 95 % CI) for folate deficiency (2·03; 1·35, 3·06), Fe deficiency (3·26; 2·09, 5·08) and vitamin B12 deficiency (2·05; 1·41, 2·99) than women with normal weight. Underweight was not associated with micronutrient status.

Conclusions

During early pregnancy, women with pre-pregnancy overweight and obesity had lower serum folate, Fe and vitamin B12 status. This resulted in increased risk of serum folate, Fe and vitamin B12 deficiencies in women with obesity.

Copyright
Corresponding author
* Corresponding author: Email T.Vrijkotte@amc.uva.nl
References
Hide All
1. Zeitlin, J, Mohangoo, A, Delnord, M et al. (2013) The European Perinatal Health Report. The Health and Care of Pregnant Women and Babies in Europe in 2010. Paris: Euro-Peristat with SCPE and EUROCAT.
2. Bartsch, E, Medcalf, KE, Park, AL et al. (2016) Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ 353, i1753.
3. Triunfo, S & Lanzone, A (2014) Impact of overweight and obesity on obstetric outcomes. J Endocrinol Invest 37, 323329.
4. Rasmussen, SA, Chu, SY, Kim, SY et al. (2008) Maternal obesity and risk of neural tube defects: a metaanalysis. Am J Obstet Gynecol 198, 611619.
5. Rahman, MM, Abe, SK, Kanda, M et al. (2015) Maternal body mass index and risk of birth and maternal health outcomes in low- and middle-income countries: a systematic review and meta-analysis. Obes Rev 16, 758770.
6. Wu, G, Imhoff-Kunsch, B & Girard, AW (2012) Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr Perinat Epidemiol 26, Suppl. 1, 426.
7. Kimmons, JE, Blanck, HM, Tohill, BC et al. (2006) Associations between body mass index and the prevalence of low micronutrient levels among US adults. MedGenMed 8, 59.
8. Nesby-O’Dell, S, Scanlon, KS, Cogswell, ME et al. (2002) Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr 76, 187192.
9. Tussing-Humphreys, LM, Liang, H, Nemeth, E et al. (2009) Excess adiposity, inflammation, and iron-deficiency in female adolescents. J Am Diet Assoc 109, 297302.
10. Cheng, HL, Bryant, C, Cook, R et al. (2012) The relationship between obesity and hypoferraemia in adults: a systematic review. Obes Rev 13, 150161.
11. Tinker, SC, Hamner, HC, Berry, RJ et al. (2012) Does obesity modify the association of supplemental folic acid with folate status among nonpregnant women of childbearing age in the United States? Birth Defects Res A Clin Mol Teratol 94, 749755.
12. Wronka, I, Suliga, E & Pawlinska-Chmara, R (2013) Evaluation of lifestyle of underweight, normal weight and overweight young women. Coll Antropol 37, 359365.
13. Garcia, OP, Long, KZ & Rosado, JL (2009) Impact of micronutrient deficiencies on obesity. Nutr Rev 67, 559572.
14. Laraia, BA, Bodnar, LM & Siega-Riz, AM (2007) Pregravid body mass index is negatively associated with diet quality during pregnancy. Public Health Nutr 10, 920926.
15. Hermoso, M, Vollhardt, C, Bergmann, K et al. (2011) Critical micronutrients in pregnancy, lactation, and infancy: considerations on vitamin D, folic acid, and iron, and priorities for future research. Ann Nutr Metab 59, 59.
16. Berti, C, Biesalski, HK, Gartner, R et al. (2011) Micronutrients in pregnancy: current knowledge and unresolved questions. Clin Nutr 30, 689701.
17. Krikke, GG, Grooten, IJ, Vrijkotte, T et al. (2016) Vitamin B12 and folate status in early pregnancy and cardiometabolic risk factors in the offspring at age 5–6 years: findings from the ABCD multi-ethnic birth cohort. BJOG 123, 384392.
18. Yajnik, CS, Deshpande, SS, Jackson, AA et al. (2008) Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia 51, 2938.
19. Scholl, TO, Hediger, ML, Fischer, RL et al. (1992) Anemia vs iron deficiency: increased risk of preterm delivery in a prospective study. Am J Clin Nutr 55, 985988.
20. Lao, TT, Tam, KF & Chan, LY (2000) Third trimester iron status and pregnancy outcome in non-anaemic women; pregnancy unfavourably affected by maternal iron excess. Hum Reprod 15, 18431848.
21. Alwan, NA, Cade, JE, McArdle, HJ et al. (2015) Maternal iron status in early pregnancy and birth outcomes: insights from the Baby’s Vascular health and Iron in Pregnancy study. Br J Nutr 113, 19851992.
22. Radlowski, EC & Johnson, RW (2013) Perinatal iron deficiency and neurocognitive development. Front Hum Neurosci 7, 585.
23. Knight, BA, Shields, BM, Brook, A et al. (2015) Lower circulating B12 is associated with higher obesity and insulin resistance during pregnancy in a non-diabetic white British population. PLoS One 10, e0135268.
24. Tomedi, LE, Chang, CC, Newby, PK et al. (2013) Pre-pregnancy obesity and maternal nutritional biomarker status during pregnancy: a factor analysis. Public Health Nutr 16, 14141418.
25. Cao, C, Pressman, EK, Cooper, EM et al. (2015) Prepregnancy body mass index and gestational weight gain have no negative impact on maternal or neonatal iron status. Reprod Sci 23, 613622.
26. Garcia-Valdes, L, Campoy, C, Hayes, H et al. (2015) The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy. Int J Obes (Lond) 39, 571578.
27. Jones, AD, Zhao, G, Jiang, YP et al. (2016) Maternal obesity during pregnancy is negatively associated with maternal and neonatal iron status. Eur J Clin Nutr 70, 918924.
28. van Eijsden, M, Vrijkotte, TG, Gemke, RJ et al. (2011) Cohort profile: the Amsterdam born children and their development (ABCD) study. Int J Epidemiol 40, 11761186.
29. Krishnaveni, GV, Hill, JC, Veena, SR et al. (2009) Low plasma vitamin B12 in pregnancy is associated with gestational ‘diabesity’ and later diabetes. Diabetologia 52, 23502358.
30. Simcox, JA & McClain, DA (2013) Iron and diabetes risk. Cell Metab 17, 329341.
31. World Health Organization (2016) BMI Classification. http://www.apps.who.int/bmi/index.jsp?introPage=intro_3.html (accessed December 2016).
32. van Eijsden, M, van der Wal, MF, Hornstra, G et al. (2005) Can whole-blood samples be stored over 24 hours without compromising stability of C-reactive protein, retinol, ferritin, folic acid, and fatty acids in epidemiologic research? Clin Chem 51, 230232.
33. Goedhart, G, van der Wal, MF, van Eijsden, M et al. (2011) Maternal vitamin B-12 and folate status during pregnancy and excessive infant crying. Early Hum Dev 87, 309314.
34. Zhang, Z, Yuan, E, Liu, J et al. (2013) Gestational age-specific reference intervals for blood copper, zinc, calcium, magnesium, iron, lead, and cadmium during normal pregnancy. Clin Biochem 46, 777780.
35. World Health Organization (2015) Serum and red blood cell folate concentrations for assessing folate status in populations. http://www.apps.who.int/iris/bitstream/10665/162114/1/WHO_NMH_NHD_EPG_15.01.pdf?ua=1 (accessed October 2017).
36. World Health Organization (2011) Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. http://www.apps.who.int/iris/bitstream/10665/85843/1/WHO_NMH_NHD_MNM_11.2_eng.pdf (accessed October 2017).
37. Academic Medical Center Amsterdam (2016) Laboratoriumbepalingen AMC. Intranet Academic Medical Center. http://www.intranet.amc.nl/web/intranet.htm (accessed October 2016).
38. Nikonorov, AA, Skalnaya, MG, Tinkov, AA et al. (2015) Mutual interaction between iron homeostasis and obesity pathogenesis. J Trace Elem Med Biol 30, 207214.
39. Kell, DB & Pretorius, E (2014) Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 6, 748773.
40. Kroot, JJ, Tjalsma, H, Fleming, RE et al. (2011) Hepcidin in human iron disorders: diagnostic implications. Clin Chem 57, 16501669.
41. Shin, D, Lee, KW & Song, WO (2016) Pre-pregnancy weight status is associated with diet quality and nutritional biomarkers during pregnancy. Nutrients 8, 162.
42. Carmichael, SL, Yang, W, Gilboa, S et al. (2016) Elevated body mass index and decreased diet quality among women and risk of birth defects in their offspring. Birth Defects Res A Clin Mol Teratol 106, 164171.
43. Aronsson, CA, Vehik, K, Yang, J et al. (2013) Use of dietary supplements in pregnant women in relation to sociodemographic factors – a report from The Environmental Determinants of Diabetes in the Young (TEDDY) study. Public Health Nutr 16, 13901402.
44. Krause, A, Neitz, S, Magert, HJ et al. (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480, 147150.
45. Pigeon, C, Ilyin, G, Courselaud, B et al. (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276, 78117819.
46. Shen, M, Chaudhry, SH, MacFarlane, AJ et al. (2016) Serum and red-blood-cell folate demonstrate differential associations with BMI in pregnant women. Public Health Nutr 19, 25722579.
47. da Silva, VR, Hausman, DB, Kauwell, GP et al. (2013) Obesity affects short-term folate pharmacokinetics in women of childbearing age. Int J Obes (Lond) 37, 16081610.
48. Sandovici, I, Hoelle, K, Angiolini, E et al. (2012) Placental adaptations to the maternal–fetal environment: implications for fetal growth and developmental programming. Reprod Biomed Online 25, 6889.
49. Stewart, AW, Jackson, RT, Ford, MA et al. (1987) Underestimation of relative weight by use of self-reported height and weight. Am J Epidemiol 125, 122126.
50. Shin, D, Chung, H, Weatherspoon, L et al. (2014) Validity of prepregnancy weight status estimated from self-reported height and weight. Matern Child Health J 18, 16671674.
51. Wheeler, S (2008) Assessment and interpretation of micronutrient status during pregnancy. Proc Nutr Soc 67, 437450.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
PDF
Supplementary materials

Scholing et al. supplementary material
Tables S1-S3

 PDF (252 KB)
252 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 6
Total number of PDF views: 46 *
Loading metrics...

Abstract views

Total abstract views: 294 *
Loading metrics...

* Views captured on Cambridge Core between 21st March 2018 - 24th May 2018. This data will be updated every 24 hours.