Skip to main content Accessibility help
×
×
Home

Diet quality as measured by the Diet Quality Index–International is associated with prospective changes in body fat among Canadian children

  • Solmaz Setayeshgar (a1), Katerina Maximova (a1), John Paul Ekwaru (a1), Katherine Gray-Donald (a2), Mélanie Henderson (a3) (a4), Gilles Paradis (a2) (a5), Angelo Tremblay (a6) and Paul Veugelers (a1)...
Abstract
Objective

To quantify the association of dietary quality with prospective changes in adiposity.

Design

Children participating in the QUALITY (QUebec Adipose and Lifestyle InvesTigation in Youth) study underwent examination at baseline and at 2-year follow-up. Dietary quality was assessed by the Diet Quality Index–International (DQII) using three non-consecutive 24 h diet recalls at baseline. The DQII has four main categories: dietary adequacy, variety, moderation and overall balance. Fat mass index (FMI; [fat mass (kg)]/[height (m)]2), central FMI (CFMI; [trunk fat mass (kg)]/[height (m)]2), percentage body fat (%BF; [total fat mass (kg)]/[total mass (kg)]) and percentage central BF (%CBF; [trunk fat mass (kg)]/[total mass (kg)]) were assessed through dual-energy X-ray absorptiometry.

Setting

Children were selected from schools in the greater Montreal, Sherbrooke and Quebec City metropolitan areas between 2005 and 2008, Quebec, Canada.

Subjects

A total of 546 children aged 8–10 years, including 244 girls and 302 boys.

Results

Regression analysis adjusting for age, sex, energy intake, physical activity and Tanner stage revealed that every 10-unit improvement in overall DQII score was associated with lower gain in CFMI (β=−0·08; 95 % CI −0·17, −0·003) and %BF (β=−0·55; 95 % CI −1·08, −0·02). Each unit improvement in dietary adequacy score was associated with lower gain in FMI (β=−0·05; 95 % CI −0·08, −0·008), CFMI (β=−0·03; 95 % CI −0·05, −0·007), %BF (β=−0·15; 95 % CI −0·28, −0·03) and %CBF (β=−0·09; 95 % CI −0·15, −0·02).

Conclusions

Promotion of dietary quality and adequacy may reduce weight gain in childhood and prevent chronic diseases later in life.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Diet quality as measured by the Diet Quality Index–International is associated with prospective changes in body fat among Canadian children
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Diet quality as measured by the Diet Quality Index–International is associated with prospective changes in body fat among Canadian children
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Diet quality as measured by the Diet Quality Index–International is associated with prospective changes in body fat among Canadian children
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: Email katerina.maximova@ualberta.ca
References
Hide All
1. McMahan, CA, McGill, HC, Gidding, SS et al. (2007) PDAY risk score predicts advanced coronary artery atherosclerosis in middle-aged persons as well as youth. Atherosclerosis 190, 370377.
2. McGill, HC, McMahan, CA, Herderick, EE et al. (2000) Origin of atherosclerosis in childhood and adolescence. Am J Clin Nutr 72, 5 Suppl., 1307S1315S.
3. Reilly, J & Kelly, J (2010) Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes (Lond) 35, 891898.
4. Ng, M, Fleming, T, Robinson, M et al. (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766781.
5. Shields, M (2006) Overweight and obesity among children and youth. Health Rep 17, 2742.
6. Statistics Canada (2012) Body Mass Index of Canadian Children and Youth, 2009 to 2011. Catalogue no. 82-625-X2011001. Ottawa, ON: Statistics Canada.
7. Frayn, KN, Coppack, SW & Potts, JL (1992) Effect of diet on human adipose tissue metabolism. Proc Nutr Soc 51, 409418.
8. Nelson, LH & Tucker, LA (1996) Diet composition related to body fat in a multivariate study of 203 men. J Am Diet Assoc 96, 771777.
9. Kromhout, D, Bloemberg, B, Seidell, J et al. (2001) Physical activity and dietary fiber determine population body fat levels: the Seven Countries Study. Int J Obes Relat Metab Disord 25, 301306.
10. Miller, WC, Niederpruem, MG, Wallace, JP et al. (1994) Dietary fat, sugar, and fiber predict body fat content. J Am Diet Assoc 94, 612615.
11. Flatt, JP (1995) Use and storage of carbohydrate and fat. Am J Clin Nutr 61, 4 Suppl., 952S959S.
12. Major, GC, Alarie, FP, Doré, J et al. (2009) Calcium plus vitamin D supplementation and fat mass loss in female very low-calcium consumers: potential link with a calcium-specific appetite control. Br J Nutr 101, 659663.
13. Major, GC, Doucet, E, Jacqmain, M et al. (2008) Multivitamin and dietary supplements, body weight and appetite: results from a cross-sectional and a randomised double-blind placebo-controlled study. Br J Nutr 99, 11571167.
14. Kourlaba, G & Panagiotakos, DB (2009) Dietary quality indices and human health: a review. Maturitas 62, 18.
15. Kennedy, ET, Ohls, J, Carlson, S et al. (1995) The Healthy Eating Index: design and applications. J Am Diet Assoc 95, 11031108.
16. Guenther, PM, Casavale, KO, Reedy, J et al. (2013) Update of the Healthy Eating Index: HEI-2010. J Acad Nutr Diet 113, 569580.
17. Kim, S, Haines, PS, Siega-Riz, AM et al. (2003) The Diet Quality Index–International (DQI-I) provides an effective tool for cross-national comparison of diet quality as illustrated by China and the United States. J Nutr 133, 34763484.
18. Meyerkort, C, Oddy, WH, O’Sullivan, T et al. (2012) Early diet quality in a longitudinal study of Australian children: associations with nutrition and body mass index later in childhood and adolescence. J Dev Orig Health Dis 3, 2131.
19. Okubo, H, Crozier, SR, Harvey, NC et al. (2015) Diet quality across early childhood and adiposity at 6 years: the Southampton Women’s Survey. Int J Obes (Lond) 39, 14561462.
20. Kuhle, S, Allen, AC & Veugelers, PJ (2010) Perinatal and childhood risk factors for overweight in a provincial sample of Canadian Grade 5 students. Int J Pediatr Obes 5, 8896.
21. Hurley, KM, Oberlander, SE, Merry, BC et al. (2009) The healthy eating index and youth healthy eating index are unique, nonredundant measures of diet quality among low-income, African American adolescents. J Nutr 139, 359364.
22. Lazarou, C, Panagiotakos, DB & Matalas, A (2008) Development and accuracy of E-KINDEX: a novel dietary index and a self-monitoring tool that is associated with obesity status in children. J Am Diet Assoc 108, A49.
23. Lambert, M, Van Hulst, A, O’Loughlin, J et al. (2012) Cohort profile: the Quebec adipose and lifestyle investigation in youth cohort. Int J Epidemiol 41, 15331544.
24. Grundy, SM, Cleeman, JI, Daniels, SR et al. (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112, 27352752.
25. Health Canada (2011) Eating Well with Canada’s Food Guide. http://www.hc-sc.gc.ca/fn-an/food-guide-aliment/order-commander/eating_well_bien_manger-eng.php (accessed September 2015).
26. Veugelers, PJ, Fitzgerald, AL & Johnston, E (2005) Dietary intake and risk factors for poor diet quality among children in Nova Scotia. Can J Public Health 96, 212216.
27. Ferland, A, Chu, YL, Gleddie, D et al. (2014) Leadership skills are associated with health behaviours among Canadian children. Health Promot Int 30, 106113.
28. Kim, MH & Bae, YJ (2010) Evaluation of diet quality of children and adolescents based on nutrient and food group intake and diet quality index-international (DQI-I). Korean J Community Nutr 15, 114.
29. Goran, MI (1998) Measurement issues related to studies of childhood obesity: assessment of body composition, body fat distribution, physical activity, and food intake. Pediatrics 101, 505518.
30. Freedman, DS, Wang, J, Maynard, LM et al. (2005) Relation of BMI to fat and fat-free mass among children and adolescents. Int J Obes (Lond) 29, 18.
31. Lambert, M, Delvin, EE, Levy, E et al. (2008) Prevalence of cardiometabolic risk factors by weight status in a population-based sample of Quebec children and adolescents. Can J Cardiol 24, 575583.
32. de Onis, M, Onyango, AW, Van den Broeck, J et al. (2004) Measurement and standardization protocols for anthropometry used in the construction of a new international growth reference. Food Nutr Bull 25, 1 Suppl., S27S36.
33. Kuczmarski, RJ, Ogden, CL, Guo, SS et al. (2002) 2000 CDC Growth Charts for the United States: methods and development. Vital Health Stat 11 issue 246, 1190.
34. Cole, TJ & Lobstein, T (2012) Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes 7, 284294.
35. Marshall, WA & Tanner, JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44, 291303.
36. Marshall, WA & Tanner, JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45, 1323.
37. Trost, SG, Loprinzi, PD, Moore, R et al. (2011) Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc 43, 13601368.
38. Colley, RC, Garriguet, D, Janssen, I et al. (2011) Physical activity of Canadian children and youth: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep 22, 1523.
39. Tremblay, MS, Warburton, DE, Janssen, I et al. (2011) New Canadian physical activity guidelines. Appl Physiol Nutr Metab 36, 3646.
40. Jacoby, WG (2000) Loess: a nonparametric, graphical tool for depicting relationships between variables. Elect Stud 19, 577613.
41. Lioret, S, McNaughton, SA, Cameron, AJ et al. (2014) Three-year change in diet quality and associated changes in BMI among schoolchildren living in socio-economically disadvantaged neighbourhoods. Br J Nutr 112, 260268.
42. Lee, YD, Kim, KW, Choi, KS et al. (2016) Development of dietary pattern evaluation tool for adults and correlation with Dietary Quality Index. Nutr Res Pract 10, 305312.
43. Wretlind, A (1982) Standards for nutritional adequacy of the diet: European and WHO/FAO viewpoints. Am J Clin Nutr 36, 366375.
44. Dhonukshe-Rutten, RA, Bouwman, J, Brown, KA et al. (2013) EURRECA – evidence-based methodology for deriving micronutrient recommendations. Crit Rev Food Sci Nutr 53, 9991040.
45. Nahikian-Nelms, M (2011) Nutrition Therapy and Pathophysiology. Belmont, CA: Wadsworth, Cengage Learning.
46. Bingham, SA (1991) Limitations of the various methods for collecting dietary intake data. Ann Nutr Metab 35, 117127.
47. Després, J-P (2012) Body fat distribution and risk of cardiovascular disease an update. Circulation 126, 13011313.
48. Fung, C, McIsaac, JL, Kuhle, S et al. (2013) The impact of a population-level school food and nutrition policy on dietary intake and body weights of Canadian children. Prev Med 57, 934940.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed