Skip to main content

Does the distribution frequency matter? A subgroup specific analysis of the effectiveness of the EU School Fruit and Vegetable Scheme in Germany comparing twice and thrice weekly deliveries

  • Julia Haß (a1), Tanja Lischetzke (a2) and Monika Hartmann (a1)

The present study aimed to examine the effectiveness of two different implementation forms of the EU School Fruit and Vegetable Scheme (SFVS).


A quasi-experimental design was applied including a thrice as well as a twice weekly intervention group. Repeated 24 h dietary recalls were used to measure children’s fruit and vegetable (F&V) intake. Effects were analysed on days with and without F&V deliveries using hierarchical linear regression models.


Twelve primary schools in North Rhine-Westphalia, Germany.


Third and fourth graders (n 664).


Average daily F&V intake at pre-intervention was 0·84 frequencies in the thrice weekly intervention group, 0·90 frequencies in the twice weekly intervention group and 1·25 frequencies in the control group. Providing children thrice weekly with F&V increased children’s F&V intake on average by 0·96 (P<0·001) frequencies/d. The effects were higher on days with (1·07; P<0·001) than on days without (0·75; P<0·001) F&V deliveries. Distributing F&V twice weekly resulted in an increase of 0·75 (P<0·001) frequencies/d on average, again with higher effects on days with (1·30; P<0·001) than without (0·48; P<0·003) F&V deliveries. Subgroup analysis revealed some indications for differential effectiveness only in the twice weekly intervention group.


The SFVS with thrice or twice weekly deliveries of F&V led to a significant increase in children’s F&V intake on days with and without deliveries. The latter might provide an indication of positive long-term effects of the scheme. The scheme shows equal efficiency for almost all subgroups.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Does the distribution frequency matter? A subgroup specific analysis of the effectiveness of the EU School Fruit and Vegetable Scheme in Germany comparing twice and thrice weekly deliveries
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Does the distribution frequency matter? A subgroup specific analysis of the effectiveness of the EU School Fruit and Vegetable Scheme in Germany comparing twice and thrice weekly deliveries
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Does the distribution frequency matter? A subgroup specific analysis of the effectiveness of the EU School Fruit and Vegetable Scheme in Germany comparing twice and thrice weekly deliveries
      Available formats
Corresponding author
* Corresponding author: Email
Hide All
1. Lobstein, T, Baur, L & Uauy, R (2004) Obesity in children and young people: a crisis in public health. Obes Rev 5, Suppl. 1, 4104.
2. Ng, M, Fleming, T, Robinson, M et al. (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766781.
3. Brettschneider, A-K, Schaffrath Rosario, A, Kuhnert, R et al. (2015) Updated prevalence rates of overweight and obesity in 11- to 17-year-old adolescents in Germany. Results from the telephone-based KiGGS Wave 1 after correction for bias in self-reports. BMC Public Health 15, 1101.
4. Abarca-Gómez, L, Abdeen, ZA, Hamid, ZA et al. (2017) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390, 26272642.
5. Fletcher, S, Wright, C, Jones, A et al. (2017) Tracking of toddler fruit and vegetable preferences to intake and adiposity later in childhood. Matern Child Nutr 13, e12290.
6. Lien, N, Lytle, LA & Klepp, KI (2001) Stability in consumption of fruit, vegetables, and sugary foods in a cohort from age 14 to age 21. Prev Med 33, 217226.
7. Baranowski, T, Mendlein, J, Resnicow, K et al. (2000) Physical activity and nutrition in children and youth: an overview of obesity prevention. Prev Med 31, Suppl. 2, S1S10.
8. Pařízková, J (2009) Nutrition, Physical Activity, and Health in Early Life, 2nd ed. Boca Raton, FL: Taylor & Francis.
9. Chan, RSM & Woo, J (2010) Prevention of overweight and obesity: how effective is the current public health approach. Int J Environ Res Public Health 7, 765783.
10. Afshin, A, Forouzanfar, MH, Reitsma, MB et al. (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377, 1327.
11. Müller-Riemenschneider, F, Reinhold, T, Berghöfer, A et al. (2008) Health-economic burden of obesity in Europe. Eur J Epidemiol 23, 499509.
12. Lytle, LA, Jacobs, DR, JR, Perry, CL et al. (2002) Achieving physiological change in school-based intervention trials: what makes a preventive intervention successful? Br J Nutr 88, 219221.
13. Lobstein, T & Baur, LA (2005) Policies to prevent childhood obesity in the European Union. Eur J Public Health 15, 576579.
14. Hassan, A (editor) (2015) School Nutrition and Activity: Impacts on Well-Being. Oakville, ON: Apple Academic Press.
15. Perez-Cueto, FJA, Aschemann-Witzel, J, Shankar, B et al. (2012) Assessment of evaluations made to healthy eating policies in Europe: a review within the EATWELL Project. Public Health Nutr 15, 14891496.
16. de Bourdeaudhuij, I, van Cauwenberghe, E, Spittaels, H et al. (2011) School-based interventions promoting both physical activity and healthy eating in Europe: a systematic review within the HOPE project. Obes Rev 12, 205216.
17. Rolls, BJ, Ello-Martin, JA & Tohill, BC (2004) What can intervention studies tell us about the relationship between fruit and vegetable consumption and weight management? Nutr Rev 62, 117.
18. Ledoux, TA, Hingle, MD & Baranowski, T (2011) Relationship of fruit and vegetable intake with adiposity: a systematic review. Obes Rev 12, e143e150.
19. He, K, Hu, FB, Colditz, GA et al. (2004) Changes in intake of fruits and vegetables in relation to risk of obesity and weight gain among middle-aged women. Int J Obes Relat Metab Disord 28, 15691574.
20. Vioque, J, Weinbrenner, T, Castello, A et al. (2008) Intake of fruits and vegetables in relation to 10-year weight gain among Spanish adults. Obesity (Silver Spring) 16, 664670.
21. Yngve, A, Wolf, A, Poortvliet, E et al. (2005) Fruit and vegetable intake in a sample of 11-year-old children in 9 European countries: The Pro Children Cross-sectional Survey. Ann Nutr Metab 49, 236245.
22. Borrmann, A & Mensink, GBM (2015) Obst- und Gemusekonsum von Kindern und Jugendlichen in Deutschland: Ergebnisse der KiGGS-Welle 1. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 58, 10051014.
23. Evans, CEL, Christian, MS, Cleghorn, CL et al. (2012) Systematic review and meta-analysis of school-based interventions to improve daily fruit and vegetable intake in children aged 5 to 12 y. Am J Clin Nutr 96, 889901.
24. de Sa, J & Lock, K (2008) Will European agricultural policy for school fruit and vegetables improve public health? A review of school fruit and vegetable programmes. Eur J Public Health 18, 558568.
25. Rasmussen, M, Krolner, R, Klepp, K-I et al. (2006) Determinants of fruit and vegetable consumption among children and adolescents: a review of the literature. Part I: quantitative studies. Int J Behav Nutr Phys Act 3, 22.
26. Wolnicka, K, Taraszewska, AM, Jaczewska-Schuetz, J et al. (2015) Factors within the family environment such as parents’ dietary habits and fruit and vegetable availability have the greatest influence on fruit and vegetable consumption by Polish children. Public Health Nutr 18, 27052711.
27. Wyse, R, Wolfenden, L & Bisquera, A (2015) Characteristics of the home food environment that mediate immediate and sustained increases in child fruit and vegetable consumption: mediation analysis from the Healthy Habits cluster randomised controlled trial. Int J Behav Nutr Phys Act 12, 118.
28. Martin, CR, Watson, RR & Preedy, VR (editors) (2011) Handbook of Behavior, Food and Nutrition. New York: Springer.
29. Birch, LL, Gunder, L, Grimm-Thomas, K et al. (1998) Infants’ consumption of a new food enhances acceptance of similar foods. Appetite 30, 283295.
30. Gerrish, CJ & Mennella, JA (2001) Flavor variety enhances food acceptance in formula-fed infants. Am J Clin Nutr 73, 10801085.
31. Loewen, R & Pliner, P (1999) Effects of prior exposure to palatable and unpalatable novel foods on children’s willingness to taste other novel foods. Appetite 32, 351366.
32. Pliner, P & Stallberg-White, C (2000) ‘Pass the ketchup, please’: familiar flavors increase children’s willingness to taste novel foods. Appetite 34, 95103.
33. Shepherd, J, Harden, A, Rees, R et al. (2006) Young people and healthy eating: a systematic review of research on barriers and facilitators. Health Educ Res 21, 239257.
34. European Commission (2015) School Fruit Scheme: EU initiative. (accessed February 2015).
35. European Commission (2012) EU School Fruit Scheme – North Rhine-Westphalia: North Rhine-Westphalia – Regional Strategy for the EU School Fruit Scheme. (accessed February 2015).
36. Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz NRW (2015) EU-Schulobst- und -gemüseprogramm NRW: Daten und Fakten. (accessed February 2015).
37. Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz NRW (2011) Regionale Strategie Nordrhein-Westfalens für das EU-Schulobstprogramm NRW Durchführungszeitraum: 1. (accessed October 2017).
38. Methner, S, Maschkowski, G & Hartmann, M (2017) The European School Fruit Scheme: impact on children’s fruit and vegetable consumption in North Rhine-Westphalia, Germany. Public Health Nutr 20, 542548.
39. Fernández-Alvira, JM, Börnhorst, C, Bammann, K et al. (2015) Prospective associations between socio-economic status and dietary patterns in European children: the Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants (IDEFICS) Study. Br J Nutr 113, 517525.
40. European Commission, Directorate-General for Agriculture and Rural Development (2015) Report on the Results of the Evaluation of the School Fruit and Vegetables and School Milk Scheme against the Principles of Subsidiarity, Proportionality and Better Regulation. (accessed January 2017).
41. Edmunds, LD & Ziebland, S (2002) Development and validation of the Day in the Life Questionnaire (DILQ) as a measure of fruit and vegetable questionnaire for 7–9 year olds. Health Educ Res 17, 211220.
42. Böhm, A, Ellsässer, G & Lüdecke, K (2007) Der Brandenburger Sozialindex: ein Werkzeug für die Gesundheits- und Sozialberichterstattung auf Landes- und kommunaler Ebene bei der Analyse von Einschülerdaten. Gesundheitswesen 69, 555559.
43. Raudenbush, SW & Bryk, AS (2010) Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd ed. Thousand Oaks, CA: SAGE Publications, Inc.
44. Bell, BA, Morgan, GB, Schoeneberger, JA et al. (2014) How low can you go? Methodology 10, 111.
45. Lischetzke, T, Reis, D & Arndt, C (2015) Data-analytic strategies for examining the effectiveness of daily interventions. J Occup Organ Psychol 88, 587622.
46. Enders, CK & Tofighi, D (2007) Centering predictor variables in cross-sectional multilevel models: a new look at an old issue. Psychol Methods 12, 121138.
47. Snijders, TAB & Bosker, RJ (2012) Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling, 2nd ed. Los Angeles, CA: SAGE Publications, Inc.
48. Gochman, DS (editor) (1997) Handbook of Health Behavior Research. New York: Plenum Press.
49. Jago, R, Baranowski, T & Baranowski, JC (2007) Fruit and vegetable availability: a micro environmental mediating variable? Public Health Nutr 10, 681689.
50. Reinaerts, E, Nooijer, J, de, Candel, M et al. (2007) Increasing children’s fruit and vegetable consumption: distribution or a multicomponent programme? Public Health Nutr 10, 939947.
51. Knai, C, Pomerleau, J, Lock, K et al. (2006) Getting children to eat more fruit and vegetables: a systematic review. Prev Med 42, 8595.
52. van Cauwenberghe, E, Maes, L, Spittaels, H et al. (2010) Effectiveness of school-based interventions in Europe to promote healthy nutrition in children and adolescents: systematic review of published and ‘grey’ literature. Br J Nutr 103, 781797.
53. Elles, A, Kliebisch, C, Becker, A et al. (2012) Evaluation of the European School Fruit Scheme. Bonn and Luxembourg: AFC Management Consulting AG and CO CONCEPT Marketing Consulting; available at
54. Reinaerts, E, de Nooijer, J, van de Kar, A et al. (2006) Development of a school-based intervention to promote fruit and vegetable consumption: exploring perceptions among 4‐to‐12‐year old children and their parents. Health Educ 106, 345356.
55. Haß, J & Hartmann, M (2017) What determines the fruit and vegetables intake of primary school children? – An analysis of personal and social determinants. Appetite 120, 8291.
56. Yildirim, M, van Stralen, MM, Chinapaw, MJM et al. (2011) For whom and under what circumstances do school-based energy balance behavior interventions work? Systematic review on moderators. Int J Pediatr Obes 6, e46e57.
57. Bundesministerium für Ernährung und Landwirtschaft (2016) Verpflegung in Schulen. (accessed November 2016).
58. Fismen, A-S, Smith, ORF, Torsheim, T et al. (2014) A school based study of time trends in food habits and their relation to socio-economic status among Norwegian adolescents, 2001–2009. Int J Behav Nutr Phys Act 11, 115.
59. Leech, RM, McNaughton, SA & Timperio, A (2014) The clustering of diet, physical activity and sedentary behavior in children and adolescents: a review. Int J Behav Nutr Phys Act 11, 4.
60. Capewell, S & Graham, H (2010) Will cardiovascular disease prevention widen health inequalities? PLoS Med 7, e1000320.
61. Adams, J, Mytton, O, White, M et al. (2016) Why are some population interventions for diet and obesity more equitable and effective than others? The role of individual agency. PLoS Med 13, e1001990.
62. Frieden, TR (2010) A framework for public health action: the health impact pyramid. Am J Public Health 100, 590595.
63. Weiss, CH (1972) Evaluation Research: Methods for Assessing Program Effectiveness. Englewood Cliffs, NJ: Prentice-Hall.
64. Green, JL, Camilli, G & Elmore, PB (2012) Handbook of Complementary Methods in Education Research. London: Taylor & Francis.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Haß et al. supplementary material
Tables S1-S5

 Word (37 KB)
37 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed