Skip to main content
×
×
Home

Energy requirements and aging

  • Susan B Roberts (a1) and Gerard E Dallal (a1)
Abstract
Objective

To summarise the literature on energy requirements and aging.

Design

An analysis and review of published data on components of energy expenditure and total energy expenditure (TEE).

Setting

Data on basal metabolic rate (BMR) and TEE were obtained from the US Institute of Medicine of the National Academies database (all available data from studies published before 2001, collected from 20 researchers willing to provide individual subject results).

Subjects

Those individuals from the database who were 20–100 years of age.

Results

TEE and physical activity level (PAL, defined as the ratio of total to resting energy expenditure) declined progressively throughout adult life in both normal weight and overweight men and women. In normal weight individuals (defined as body mass index (BMI) 18.5–25.0 kg m-2) TEE fell by ≈150 kcal per decade, and PAL fell from an average of 1.75 in the second decade of life to 1.28 in the ninth decade. Thermic effect of feeding data from other published studies indicated no consistent change associated with aging.

Conclusions

Aging is associated with progressive declines in resting and TEE, which have implications for defining dietary energy requirements at different stages of adult life.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Energy requirements and aging
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Energy requirements and aging
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Energy requirements and aging
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Email susan.roberts@tufts.edu
References
Hide All
1FAO, WHO, UNU. Energy and Protein Requirements. Report of a Joint FAO/WHO/UNU Expert Consultation. Technical Report Series 724. Geneva: World Health Organization, 1985.
2Garby, L. Metabolic adaptation to decreases in energy intake due to changes in the energy cost of low energy expenditure regimen. World Review of Nutrition and Dietetics 1990; 61: 173208.
3Ravussin, E, Lillioja, S, Anderson, TE, Christin, L, Bogardus, C. Determinants of 24-hour energy expenditure in man, methods and results using a respiratory chamber. The Journal of Clinical Investigation 1986; 78: 1568–78.
4Durnin, JVGA. Low energy expenditures in free-living populations. European Journal of Clinical Nutrition 1990; 44: 95102.
5Roberts, SB, Heyman, MB, Evans, WJ, Fuss, P, Tsay, R, Young, VR. Dietary energy requirements of young adult men, determined by using the doubly labelled water method. American Journal of Clinical Nutrition 1991; 54: 499505.
6Jones, PJ, Martin, LJ, Su, W, Boyd, NF. Canadian recommended nutrient intakes underestimate true energy requirements in middle-aged women. Canadian Journal of Public Health 1997; 88: 314–9.
7Roberts, SB. Energy expenditure and the development of early obesity. Annals of the New York Academy of Sciences 1993; 699: 1825.
8Sawaya, AL, Saltzman, E, Fuss, P, Young, VR, Roberts, SB. Dietary energy requirements of young and older women determined by using the doubly labelled water method. American Journal of Clinical Nutrition 1995; 62: 338–44.
9Leonard, WR, Galloway, VA, Ivakine, E. Underestimation of daily energy expenditure with the factorial method: Implications for anthropological research. American Journal of Physical Anthropology 1997; 103: 443–54.
10Morio, B, Beaufrere, B, Montaurier, C, Verdier, E, Ritz, P, Fellmann, N, Boirie, Y, Vermorel, M. Gender differences in energy expended during activities and in daily energy expenditure of elderly people. American Journal of Physiology Endocrinology and Metabolism 1997; 273: E321–7.
11Mertz, W, Tsui, JT, Reiser, S, Hallfrisch, J, Morris, ER, Steele, PD, Lashley, E. What are people really eating? The relation between energy intake derived from estimated diet records and intake determined to maintain body weight. American Journal of Clinical Nutrition 1991; 54: 291–5.
12Pannemans, DLE, Westerterp, KR. Estimation of energy intake to feed subjects at energy balance as verified with doubly labelled water: a study in the elderly. European Journal of Clinical Nutrition 1993; 47: 490–6.
13Seale, JL. Energy expenditure measurements in relation to energy requirements. American Journal of Clinical Nutrition 1995; 62(S5): S1042–6.
14Schoeller, DA. How accurate is self-reported dietary energy intake?. Nutrition Review 1990; 48: 373–9.
15Tomoyasu, NJ, Toth, MJ, Poehlman, ET. Misreporting of total energy intake in older African Americans. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity 2000; 24(1): 20–6.
16Roberts, SB. Use of the doubly labelled water method for measurement of energy expenditure, total body water, water intake, and metabolizable energy intake in humans and small animals. Canadian Journal of Physiology and Pharmacology 1989; 67(10): 1190–8.
17Schoeller, DA. Measurement of energy expenditure in free-living humans by using doubly labelled water. Journal of Nutrition 1988; 118: 1278–89.
18Roberts, SB. Use of the doubly labelled water method for measurement of energy expenditure, total body water, water intake, and metabolizable energy intake in humans and small animals. Canadian Journal of Physiology and Pharmacology 1989; 67: 1190–8.
19Lifson, N, Gordon, GB, McClintock, R. Measurement of total carbon dioxide production by means of D 218O. Journal of Applied Physiology 1955; 7: 704–10.
20Lifson, N. Theory of use of the turnover rates of body water for measuring energy and material balance. Journal of Theoretical Biology 1966; 12(1): 4674.
21Lifson, N, Gordon, GB, Visscher, MB, Nier, AO. The fate of utilized molecular oxygen and the source of oxygen of respiratory carbon dioxide, studied with the aid of heavy oxygen. The Journal of Biological Chemistry 1949; 180: 803–11.
22Bathalon, GP, Tucker, KL, Hays, NP, Vinken, AG, Greenberg, AS, McCrory, MA, Roberts, SB. Psychological measures of eating behavior and the accuracy of 3 common dietary assessment methods in healthy postmenopausal women. American Journal of Clinical Nutrition 2000; 71: 739–45.
23Schoeller, DA. Energy expenditure from doubly labelled water: some fundamental considerations in humans. American Journal of Clinical Nutrition 1983; 38(6): 9991005.
24Bratteby, LE, Sandhagen, B, Lotborn, M, Samuelson, G. Daily energy expenditure and physical activity assessed by an activity diary in 374 randomly selected 15-year-old adolescents. European Journal of Clinical Nutrition 1997; 51(9): 592600.
25Bouchard, C, Tremblay, A, Despres, J-P, Nadeau, A, Lupien, PJ, Theriault, G, Dussault, J, Moorjani, S, Pinault, S, Fournier, G. The response to long-term overfeeding in identical twins. New England Journal of Medicine 1990; 322(21): 1477–82.
26Levine, JA, Eberhardt, NL, Jensen, MD. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 1999; 283: 212–4.
27Roberts, SB, Young, VR, Fuss, P, Fiatarone, MA, Richard, B, Rasmussen, H, Fiatarone, M, Cortiella, J, Dallal, GE, Young, VR. Energy expenditure and subsequent nutrient intakes in overfed young men. American Journal of Physiology 1990; 259: R461–9.
28Saltzman, E, Roberts, SB. The role of energy expenditure in energy regulation: findings from a decade of research. Nutrition Review 1995; 53(8): 209–20.
29Keys, A, Taylor, HL, Grande, F. Basal metabolism and age of adult man. Metabolism 1973; 22: 579–87.
30Schofield, WN. Predicting basal metabolic rate, new standards and review of previous work. Human Nutrition: Clinical Nutrition 1985; 39(Suppl. 1): 541.
31Fukagawa, NK, Bandini, LG, Young, JB. Effect of age on body composition and resting metabolic rate. American Journal of Physiology 1990; 259: E233–8.
32Klausen, B, Toubro, S, Astrup, A. Age and sex effects on energy expenditure. American Journal of Clinical Nutrition 1997; 65: 895907.
33Pannemans, DLE, Westerterp, KR. Energy expenditure, physical activity and basal metabolic rate of elderly subjects. British Journal of Nutrition 1995; 73(4): 571–81.
34Poehlman, ET, Melby, CL, Bradylak, SF. Relation of age and physical exercise status on metabolic rate in younger and older healthy men. Journal of Gerontology 1991; 46(2): B54–8.
35Roberts, SB. Influence of age on energy requirements. American Journal of Clinical Nutrition 1995; 62(Suppl. 50A): 1053A–8A.
36Vaughan, L, Zurlo, F, Ravussin, E. Aging and energy expenditure. American Journal of Clinical Nutrition 1991; 53: 821–5.
37Visser, M, Deurenberg, P, van Staveren, WA, Hautvast, JGAJ. Resting metabolic rate and diet-induced thermogenesis in young and elderly subjects: relationship with body composition, fat distribution, and physical activity level. American Journal of Clinical Nutrition 1995; 61: 772–8.
38Poehlman, ET, Goran, MJ, Gardner, AW, Ades, PA, Arciero, PJ, Katzman-Rooks, SM, Montgomery, SM, Toth, MJ, Sutherland, PT. Determinants of decline in resting metabolic rate in aging females. American Journal of Physiology Endocrinology and Metabolism 1993; 264: E450–5.
39Tzankoff, SP, Norris, AH. Effect of muscle mass decrease on age-related BMR changes. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 1977; 43: 1001–6.
40Poehlman, ET. Energy expenditure and requirements in aging humans. Journal of Nutrition 1992; 122: 2057–65.
41Haderslev, KV, Svendsen, OL, Staun, M. Does paracentesis of ascites influence measurements of bone mineral or body composition by dual-energy X-ray absorptiometry?. Metabolism 1999; 48(3): 373–7.
42Popkin, BM, Doak, CM. The obesity epidemic is a worldwide phenomenon. Nutrition Review 1998; 56: 106–14.
43Henry, CJ. Mechanisms of changes in basal metabolism during ageing. European Journal of Clinical Nutrition 2000; 54(Suppl. 3): S77S91.
44Golay, A, Schutz, Y, Meyer, HU. Glucose induced thermogenesis in nondiabetic and diabetic obese subjects. Diabetes 1982; 31: 1023–8.
45Morgan, JB, York, DA. Thermic effect of feeding in relation to energy balance in elderly men. Annals of Nutrition and Metabolism 1983; 27: 71–7.
46Schutz, Y, Golay, A, Felber, J-P, Jequier, E. Decreased glucose-induced thermogenesis after weight loss in obese subjects: a predisposing factor for relapse obesity?. American Journal of Clinical Nutrition 1984; 39: 380–7.
47Schwartz, RS, Jaegar, LF, Veith, RC. The thermic effect of feeding in older men: the importance of the sympathetic nervous system. Metabolism 1990; 39: 733–7.
48Thorne, A, Wahren, J. Diminished meal-induced thermogenesis in elderly man. Clinical Physiology 1990; 10: 427–37.
49Vansant, G, VanGaal, L, VanAcker, K, DeLeeuw, I. Importance of glucagon as a determinant of resting metabolic rate and glucose-induced thermogenesis in obese women. Metabolism 1991; 40(7): 672–5.
50Golay, A, Schutz, Y, Meyer, HU, Thiebaud, D, Curchod, B, Maeder, E, Felber, JP, Jequier, E. Glucose-induced thermogenesis in nondiabetic and diabetic obese subjects. Diabetes 1982; 31: 1023–8.
51Bloesch, D, Schutz, Y, Breitenstein, E, Jequier, E, Felber, JP. Thermogenic response to an oral glucose load in man: comparison between young and elderly subjects. Journal of the American College of Nutrition 1988; 7(6): 471–83.
52Fukagawa, NR, Bandini, LG, Lim, PH, Roingeard, F, Lee, MA, Young, JB. Protein-induced changes in energy expenditure in young and old individuals. The American Journal of Physiology 1991; 260(23): E345–52.
53Melanson, KJ, Saltzman, E, Russell, R, Roberts, SB. The effects of age on postprandial thermogenesis at four graded energetic challenges: findings in young and older women. Journal of Gerontology 1998; 53B: 409–14.
54Tuttle, WW, Horvath, SM, Presson, LF, Daum, K. Specific dynamic action in men past 60 years of age. Journal of Applied Physiology 1953; 5: 631–4.
55Black, AE, Coward, WA, Cole, TJ, Prentice, AM. Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. European Journal of Clinical Nutrition 1996; 50: 7292.
56Roberts, SB. Energy requirements of older individuals. European Journal of Clinical Nutrition 1996; 50(Suppl. 1): S112–8.
57Reilly, JJ, Lord, A, Bunker, VW, Prentice, AM, Coward, WA, Thomas, AJ, Briggs, RS. Energy balance in healthy elderly women. British Journal of Nutrition 1993; 69: 21–7.
58Roberts, SB, Young, VR, Fuss, P, Heyman, MB, Fiatarone, MA, Dallal, GE, Cortiella, J, Evans, WJ. What are the dietary energy needs of adults?. International Journal of Obesity 1992; 16: 969–76.
59Ortega, RM, Andres, P, Redondo, MR, Zamora, MJ, Lopez-Sobaler, AM, Encinas-Sotillos, A. Dietary assessment of a group of elderly Spanish people. International Journal of Food Sciences and Nutrition 1995; 46(2): 137–44.
60Roberts, SB, Dallal, GE. The effects of age on energy balance. American Journal of Clinical Nutrition 1998; S68: S975–9.
61Suominen, H, Heikkinen, E, Parkatti, T, Forsberg, S, Kiiskinen, A. Effects of ‘lifelong’ physical training on functional aging in men. Scandinavian Journal of Social Medicine 1977; 14(Suppl.): 225–40.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed