Skip to main content
×
×
Home

Feasibility and impact study of a reward-based mobile application to improve adolescents’ snacking habits

  • Nathalie De Cock (a1), Wendy Van Lippevelde (a2), Jolien Vangeel (a3), Melissa Notebaert (a3), Kathleen Beullens (a3), Steven Eggermont (a3), Benedicte Deforche (a2) (a4), Lea Maes (a2), Lien Goossens (a5), Sandra Verbeken (a5), Ellen Moens (a5), Leentje Vervoort (a5), Caroline Braet (a5), Lieven Huybregts (a6), Patrick Kolsteren (a1), John Van Camp (a1) and Carl Lachat (a1)...
Abstract
Objective

Adolescents’ snacking habits are driven by both explicit reflective and implicit hedonic processes. Hedonic pathways and differences in sensitivity to food rewards in addition to reflective determinants should be considered. The present study evaluated the feasibility and impact of a mobile phone-delivered intervention, incorporating explicit reflective and implicit rewarding strategies, on adolescents’ snack intake.

Design

Adolescents (n 988; mean age 14·9 (sd 0·70) years, 59·4 % boys) completed a non-randomized clustered controlled trial. Adolescents (n 416) in the intervention schools (n 3) were provided with the intervention application for four weeks, while adolescents (n 572) in the control schools (n 3) followed the regular curriculum. Outcomes were differences in healthy snacking ratio and key determinants (awareness, intention, attitude, self-efficacy, habits and knowledge). Process evaluation data were collected via questionnaires and through log data of the app.

Results

No significant positive intervention effects on the healthy snack ratio (b=−3·52 (se 1·82), P>0·05) or targeted determinants were observed. Only 268 adolescents started using the app, of whom only fifty-five (20·5 %) still logged in after four weeks. Within the group of users, higher exposure to the app was not significantly associated with positive intervention effects. App satisfaction ratings were low in both high and low user groups. Moderation analyses revealed small positive intervention effects on the healthy snack ratio in high compared with low reward-sensitive boys (b=1·38 (se 0·59), P<0·05).

Conclusions

The intervention was not able to improve adolescents’ snack choices, due to low reach and exposure. Future interventions should consider multicomponent interventions, teacher engagement, exhaustive participatory app content development and tailoring.

Copyright
Corresponding author
*Corresponding author: Email Nathaliel.decock@ugent.be
References
Hide All
1. Spear, BA (2002) Adolescent growth and development. J Am Diet Assoc 102, 3 Suppl., S23S29.
2. Diethelm, K, Jankovic, N, Moreno, LA et al. (2012) Food intake of European adolescents in the light of different food-based dietary guidelines: results of the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr 15, 386398.
3. Phillips, SM, Bandini, LG, Naumova, EN et al. (2004) Energy-dense snack food intake in adolescence: longitudinal relationship to weight and fatness. Obes Res 12, 461472.
4. Lien, N, Lytle, LA & Klepp, KI (2001) Stability in consumption of fruit, vegetables, and sugary foods in a cohort from age 14 to age 21. Prev Med 33, 217226.
5. Sebastian, RS, Cleveland, LE & Goldman, JD (2008) Effect of snacking frequency on adolescents’ dietary intakes and meeting national recommendations. J Adolesc Health 42, 503511.
6. Bucher, T, Collins, C, Diem, S et al. (2016) Adolescents’ perception of the healthiness of snacks. Food Qual Prefer 50, 94101.
7. De Vet, E, Stok, FM, De Wit, JBF et al. (2015) The habitual nature of unhealthy snacking: how powerful are habits in adolescence? Appetite 95, 182187.
8. Rodriguez, G & Moreno, LA (2006) Is dietary intake able to explain differences in body fatness in children and adolescents? Nutr Metab Cardiovasc Dis 16, 294301.
9. De Bourdeaudhuij, I, Van Cauwenberghe, E, Spittaels, H et al. (2011) School-based interventions promoting both physical activity and healthy eating in Europe: a systematic review within the HOPE project. Obes Rev 12, 205216.
10. Stice, E, Shaw, H & Marti, CN (2006) A meta-analytic review of obesity prevention programs for children and adolescents: the skinny on interventions that work. Psychol Bull 132, 667691.
11. Kremers, SP, de Bruijn, GJ, Visscher, TL et al. (2006) Environmental influences on energy balance-related behaviors: a dual-process view. Int J Behav Nutr Phys Act 3, 9.
12. Deutsch, R & Strack, F (2006) Duality models in social psychology: from dual processes to interacting systems. Psychol Inq 17, 166172.
13. Hagger, MS (2016) Non-conscious processes and dual-process theories in health psychology. Health Psychol Rev 10, 375380.
14. Rothman, AJ, Sheeran, P & Wood, W (2009) Reflective and automatic processes in the initiation and maintenance of dietary change. Ann Behav Med 38, Suppl. 1, S4S17.
15. van’t Riet, J, Sijtsema, SJ, Dagevos, H et al. (2011) The importance of habits in eating behaviour. An overview and recommendations for future research. Appetite 57, 585596.
16. Reinaerts, E, de Nooijer, J, Candel, M et al. (2007) Explaining school children’s fruit and vegetable consumption: the contributions of availability, accessibility, exposure, parental consumption and habit in addition to psychosocial factors. Appetite 48, 248258.
17. Michie, S, Abraham, C, Whittington, C et al. (2009) Effective techniques in healthy eating and physical activity interventions: a meta-regression. Health Psychol 28, 690701.
18. Carver, CS & Scheier, MF (1982) Control theory: a useful conceptual framework for personality-social, clinical, and health psychology. Psychol Bull 92, 111135.
19. Appelhans, BM, Woolf, K, Pagoto, SL et al. (2011) Inhibiting food reward: delay discounting, food reward sensitivity, and palatable food intake in overweight and obese women. Obesity (Silver Spring) 19, 21752182.
20. Goldfield, GS, Lumb, AB & Colapinto, CK (2011) Relative reinforcing value of energy-dense snack foods in overweight and obese adults. Can J Diet Pract Res 72, 170174.
21. Goldfield, GS & Epstein, LH (2002) Can fruits and vegetables and activities substitute for snack foods? Health Psychol 21, 299303.
22. Vervoort, L, Clauwaert, A, Vandeweghe, L et al. (2017) Factors influencing the reinforcing value of fruit and unhealthy snacks. Eur J Nutr 56, 25892598.
23. Hennegan, JM, Loxton, NJ & Mattar, A (2013) Great expectations. Eating expectancies as mediators of reinforcement sensitivity and eating. Appetite 71, 8188.
24. Horstmann, A, Dietrich, A, Mathar, D et al. (2015) Slave to habit? Obesity is associated with decreased behavioural sensitivity to reward devaluation. Appetite 87, 175183.
25. Ames, SL, Kisbu-Sakarya, Y, Reynolds, KD et al. (2014) Inhibitory control effects in adolescent binge eating and consumption of sugar-sweetened beverages and snacks. Appetite 81, 180192.
26. Vandeweghe, L, Verbeken, S, Moens, E et al. (2016) Strategies to improve the willingness to taste: the moderating role of children’s reward sensitivity. Appetite 103, 344352.
27. Wardle, J, Herrera, ML, Cooke, L et al. (2003) Modifying children’s food preferences: the effects of exposure and reward on acceptance of an unfamiliar vegetable. Eur J Clin Nutr 57, 341348.
28. Lowe, CF, Horne, PJ, Hardman, CA et al. (2006) A peer-modeling and rewards-based intervention is effective in increasing fruit and vegetable consumption in children. Prev Med 43, 351351.
29. Cooke, LJ, Chambers, LC, Anez, EV et al. (2011) Eating for pleasure or profit: the effect of incentives on children’s enjoyment of vegetables. Psychol Sci 22, 190196.
30. Nederkoorn, C, Braet, C, Van Eijs, Y et al. (2006) Why obese children cannot resist food: the role of impulsivity. Eat Behav 7, 315322.
31. Blissett, J, Bennett, C, Fogel, A et al. (2016) Parental modelling and prompting effects on acceptance of a novel fruit in 2–4-year-old children are dependent on children’s food responsiveness. Br J Nutr 115, 554564.
32. Davis, C, Patte, K, Levitan, R et al. (2007) From motivation to behaviour: a model of reward sensitivity, overeating, and food preferences in the risk profile for obesity. Appetite 48, 1219.
33. Dietrich, A, Federbusch, M, Grellmann, C et al. (2014) Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies. Front Psychol 5, 1073.
34. Gray, JA (1994) Three fundamental emotion systems. In The Nature of Emotion: Fundamental Questions, pp. 243247 [P Ekman and RJ Davidson, editors]. New York: Oxford University Press.
35. Verbeken, S, Braet, C, Lammertyn, J et al. (2012) How is reward sensitivity related to bodyweight in children? Appetite 58, 478483.
36. De Cock, N, Van Lippevelde, W, Vervoort, L et al. (2016) Sensitivity to reward is associated with snack and sugar-sweetened beverage consumption in adolescents. Eur J Nutr 55, 16231632.
37. Apestaartjaren (2016) Onderzoeksrapport Apestaartjaren 6. https://www.apestaartjaren.be/onderzoek/apestaartjaren-6 (accessed March 2018).
38. Schoffman, DE, Turner-McGrievy, G, Jones, SJ et al. (2013) Mobile apps for pediatric obesity prevention and treatment, healthy eating, and physical activity promotion: just fun and games? Transl Behav Med 3, 320325.
39. Brannon, EE & Cushing, CC (2015) A systematic review: is there an app for that? Translational science of pediatric behavior change for physical activity and dietary interventions. J Pediatr Psychol 40, 373384.
40. Burrows, TL, Khambalia, AZ, Perry, R et al. (2015) Great ‘app‐eal’ but not there yet: a review of iPhone nutrition applications relevant to child weight management. Nutr Diet 72, 363367.
41. Dute, DJ, Bemelmans, WJ & Breda, J (2016) Using mobile apps to promote a healthy lifestyle among adolescents and students: a review of the theoretical basis and lessons learned. JMIR Mhealth Uhealth 4, e39.
42. Schoeppe, S, Alley, S, Van Lippevelde, W et al. (2016) Efficacy of interventions that use apps to improve diet, physical activity and sedentary behaviour: a systematic review. Int J Behav Nutr Phys Act 13, 127.
43. Partridge, SR, Juan, SJ, McGeechan, K et al. (2015) Poor quality of external validity reporting limits generalizability of overweight and/or obesity lifestyle prevention interventions in young adults: a systematic review. Obes Rev 16, 1331.
44. Moore, GF, Audrey, S, Barker, M et al. (2015) Process evaluation of complex interventions: Medical Research Council guidance. BMJ 350, h1258.
45. Saunders, RP, Evans, MH & Joshi, P (2005) Developing a process-evaluation plan for assessing health promotion program implementation: a how-to guide. Health Promot Pract 6, 134147.
46. REWARD Project (2013) REWARD study homepage. http://www.rewardstudy.be (accessed September 2016).
47. Van Lippevelde, W, Vangeel, J, De Cock, N et al. (2016) Using a gamified monitoring app to change adolescents’ snack intake: the development of the REWARD app and evaluation design. BMC Public Health 16, 725.
48. Schulz, KF, Altman, DG & Moher, D (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ 340, c332.
49. Des Jarlais, DC, Lyles, C, Crepaz, N et al. (2004) Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement. Am J Public Health 94, 361366.
50. Konstantopoulos, S (2008) The power of the test for treatment effects in three-level cluster randomized designs. J Res Educ Effect 1, 6688.
51. De Cock, N, Van Camp, J, Kolsteren, P et al. (2017) Development and validation of a quantitative snack and beverage FFQ for adolescents. J Hum Nutr Diet 30, 141150.
52. Bartholomew, LK, Parcel, GS, Kok, G et al. (2011) Planning Health Promotion Programs: An Intervention Mapping Approach, 3rd ed. San Francisco; CA: Jossey-Bass.
53. Nubel vzw (2015) Database of Tradenames. Brussels: Nubel vzw.
54. Department of Health (2011) Nutrient Profiling Technical Guidance. https://www.gov.uk/government/publications/the-nutrient-profiling-model (accessed March 2018).
55. Evans, EW, Jacques, PF, Dallal, GE et al. (2015) The role of eating frequency on total energy intake and diet quality in a low-income, racially diverse sample of schoolchildren. Public Health Nutr 18, 474481.
56. Llaurado, E, Albar, SA, Giralt, M et al. (2016) The effect of snacking and eating frequency on dietary quality in British adolescents. Eur J Nutr 55, 17891797.
57. Vlaams Institut Gezond Leven (2014) Vigez aanbevelingen voor voeding voor jongeren. https://www.gezondleven.be/themas/voeding/aanbevelingen (accessed June 2016).
58. Vereecken, C, De Henauw, S, Maes, L et al. (2009) Reliability and validity of a healthy diet determinants questionnaire for adolescents. Public Health Nutr 12, 18301838.
59. Gardner, B (2012) Habit as automaticity, not frequency. Eur Health Psychol 14, 3236.
60. Verplanken, B & Orbell, S (2003) Reflections on past behavior: a self-report index of habit strength. J Appl Soc Psychol 33, 13131330.
61. van Stralen, MM, te Velde, SJ, Singh, AS et al. (2011) EuropeaN energy balance research to prevent excessive weight gain among youth (ENERGY) project: design and methodology of the ENERGY cross-sectional survey. BMC Public Health 11, 65.
62. Roelants, M, Hauspie, R & Hoppenbrouwers, K (2009) References for growth and pubertal development from birth to 21 years in Flanders, Belgium. Ann Hum Biol 36, 680694.
63. Cole, TJ & Lobstein, T (2012) Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Int J Pediatr Obes 7, 284294.
64. Muris, P, Meesters, C, De Kanter, E et al. (2005) Behavioural inhibition and behavioural activation system scales for children: relationships with Eysenck’s personality traits and psychopathological symptoms. Pers Individ Dif 38, 103113.
65. Blackman, KCA, Zoellner, J, Kadir, A et al. (2015) Examining the feasibility of smartphone game applications for physical activity promotion in middle school students. Games Health J 4, 409419.
66. Spook, J, Paulussen, T, Kok, G et al. (2016) Evaluation of a serious self-regulation game intervention for overweight-related behaviors (‘Balance It’): a pilot study. J Med Internet Res 18, 169182.
67. Partridge, SR, Allman-Farinelli, M, McGeechan, K et al. (2016) Process evaluation of TXT2BFiT: a multi-component mHealth randomised controlled trial to prevent weight gain in young adults. Int J Behav Nutr Phys Act 13, 14.
68. Poels, K, de Kort, Y & Ijsselsteijn, W (2007) It is always a lot of fun!: exploring dimensions of digital game experience using focus group methodology. In Future Play ’07 Proceedings of the 2007 Conference on Future Play, Toronto, Canada, 14–17 November 2007, pp. 83–89. New York: Association for Computing Machinery; available at https://dl.acm.org/citation.cfm?id=1328202.1328218
69. Bray, JW, Schlunder, WE, Zarkin, GA et al. (2008) Analyzing Data From Nonrandomized Group Studies. Research Triangle Park, NC: RTI Press.
70. Perski, O, Blandford, A, West, R et al. (2017) Conceptualising engagement with digital behaviour change interventions: a systematic review using principles from critical interpretive synthesis. Transl Behav Med 7, 254267.
71. Garde, A, Umedaly, A, Abulnaga, SM et al. (2015) Assessment of a mobile game (‘MobileKids Monster Manor’) to promote physical activity among children. Games Health J 4, 149158.
72. Majumdar, D, Koch, PA, Lee, H et al. (2013) ‘Creature-101’: a serious game to promote energy balance-related behaviors among middle school adolescents. Games Health J 2, 280290.
73. Baghaei, N, Nandigam, D, Casey, J et al. (2016) Diabetic Mario: designing and evaluating mobile games for diabetes education. Games Health J 5, 270278.
74. Crutzen, R, Kohl, L & de Vries, N (2012) Kennissynthese Online Preventie. Maastricht: Universitaire Pers Maastricht.
75. Stok, FM, de Ridder, DT, de Vet, E et al. (2016) Hungry for an intervention? Adolescents’ ratings of acceptability of eating-related intervention strategies. BMC Public Health 16, 5.
76. DeSmet, A, Van Ryckeghem, D, Compernolle, S et al. (2014) A meta-analysis of serious digital games for healthy lifestyle promotion. Prev Med 69, 95107.
77. Cooke, LJ, Chambers, LC, Anez, EV et al. (2011) Facilitating or undermining? The effect of reward on food acceptance. A narrative review. Appetite 57, 493497.
78. Wiederhold, BK (2015) Behavioral health apps abundant, but evidence-based research nearly nonexistent. Cyberpsychol Behav Soc Netw 18, 309310.
79. Sandholzer, M, Deutsch, T, Frese, T et al. (2015) Predictors of students’ self-reported adoption of a smartphone application for medical education in general practice. BMC Med Educ 15, 1.
80. Wardle, J, Haase, AM, Steptoe, A et al. (2004) Gender differences in food choice: the contribution of health beliefs and dieting. Ann Behav Med 27, 107116.
81. Cooke, LJ & Wardle, J (2005) Age and gender differences in children’s food preferences. Br J Nutr 93, 741746.
82. Kinzie, MB & Joseph, DR (2008) Gender differences in game activity preferences of middle school children: implications for educational game design. Educ Technol Res Dev 56, 643663.
83. Lucas, K & Sherry, JL (2004) Sex differences in video game play: a communication-based explanation. Commun Res 31, 499523.
84. Scarborough, P, Boxer, A, Rayner, M et al. (2007) Testing nutrient profile models using data from a survey of nutrition professionals. Public Health Nutr 10, 337345.
85. Scarborough, P, Payne, C, Agu, CG et al. (2013) How important is the choice of the nutrient profile model used to regulate broadcast advertising of foods to children? A comparison using a targeted data set. Eur J Clin Nutr 67, 815820.
86. Hedges, LV (2007) Effect sizes in cluster-randomized designs. J Educ Behav Stat 32, 341370.
87. Feingold, A (2013) A regression framework for effect size assessments in longitudinal modeling of group differences. Rev Gen Psychol 17, 111121.
88. Selya, AS, Rose, JS, Dierker, LC et al. (2012) A practical guide to calculating Cohen’s f 2, a measure of local effect size, from PROC MIXED. Front Psychol 3, 111.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score