Skip to main content
×
×
Home

A new understanding of the relationship between sugars, dental caries and fluoride use: implications for limits on sugars consumption

  • Aubrey Sheiham (a1) and W Philip T James (a2)
Abstract
Objective

To examine the quantitative relationship between sugar intake and the progressive development of dental caries.

Design

A critical in-depth review of international studies was conducted. Methods included reassessing relevant studies from the most recent systematic review on the relationship between levels of sugars and dental caries. Reanalysis of dose–response relationships between dietary sugars and caries incidence in teeth with different levels of caries susceptibility in children was done using data from Japanese studies conducted by Takeuchi and co-workers.

Setting

Global, with emphasis on marked differences in both national sugar intake and fluoride use and preferably where one factor such as sugar intake changed progressively without changes in other factors over a decade or more.

Subjects

Children aged 6 years or more and adults.

Results

Caries occurred in both resistant and susceptible teeth of children when sugar intakes were only 2–3 % of energy intake, provided that the teeth had been exposed to sugars for >3 years. Despite increased enamel resistance after tooth eruption, there was a progressive linear increase in caries throughout life, explaining the higher rates of caries in adults than in children. Fluoride affects progression of caries development but there still is a pandemic prevalence of caries in populations worldwide.

Conclusions

Previous analyses based on children have misled public health analyses on sugars. The recommendation that sugar intakes should be ≤10 % of energy intake is no longer acceptable. The much greater adult burden of dental caries highlights the need for very low sugar intakes throughout life, e.g. 2–3 % of energy intake, whether or not fluoride intake is optimum.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A new understanding of the relationship between sugars, dental caries and fluoride use: implications for limits on sugars consumption
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A new understanding of the relationship between sugars, dental caries and fluoride use: implications for limits on sugars consumption
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A new understanding of the relationship between sugars, dental caries and fluoride use: implications for limits on sugars consumption
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Email a.sheiham@ucl.ac.uk
References
Hide All
1.World Health Organization (2003) Diet, Nutrition and the Prevention of Chronic Diseases. Joint WHO/FAO Consultation. WHO Technical Report Series no. 916. Geneva: WHO.
2.Moynihan, P (2005) The interrelationship between diet and oral health. Proc Nutr Soc 64, 571580.
3.Moynihan, P & Petersen, PE (2004) Diet, nutrition and the prevention of dental diseases. Public Health Nutr 7, 201226.
4.Moynihan, P & Kelly, S (2014) Effect on caries of restricting sugars intake: systematic review to update WHO guidelines. J Dent Res 93, 818.
5.Marthaler, TM (1990) Changes in the prevalence of dental caries: how much can be attributed to changes in diet? Caries Res 24, Suppl. 1, 315.
6.Sheiham, A (1983) Sugars and dental decay. Lancet i, 282284.
7.Sheiham, A (2001) Dietary effects on dental diseases. Public Health Nutr 4, 569591.
8.Zero, DT (2004) Sugars – the arch criminal? Caries Res 38, 277285.
9.Petersen, PE, Bourgeois, D, Ogawa, Het al. (2005) The global burden of oral diseases and risks to oral health. Bull World Health Organ 83, 661669.
10.Beaglehole, R, Benzian, H, Crail, Jet al. (2009) The Oral Health Atlas: Mapping a Neglected Global Health Issue. Brighton: Myriad Editions.
12.Sheiham, A (1991) Why free sugars consumption should be below 15 kg per person per year in industrialised countries: the dental evidence. Br Dent J 171, 6365.
13.Newbrun, E (1982) Sucrose in the dynamics of the carious process. Int Dent J 32, 1323.
14.Sreebny, LM (1982) Sugar availability, sugar consumption and dental caries. Community Dent Oral Epidemiol 10, 17.
15.Takeuchi, M (1961) Epidemiological study on dental caries in Japanese children, before, during and after World War II. Int Dental J 11, 443457.
16.Takeuchi, M, Shimizu, T, Takehisa, Ket al. (1971) Sealing of the pit and fissure with resin adhesive: IV. Results of five-year field work and a method of evaluation of field work for caries prevention. Bull Tokyo Dent Coll 12, 295316.
17.Takeuchi, M, Pu, M-Y, Shimizu, Tet al. (1980) Dental caries in the central mountain district in Taiwan, The Republic of China. Report 1: Results of survey in 1971 and 1972. J Dent Health 29, 4453.
18.Takahashi, K (1959) Statistical study on caries incidence in the first molar in relation with amount of sugar consumption. Jpn J Oral Hyg 9, 136150.
19.Okuya, Y (1960) The epidemiological study of the relation between caries incidence and sugar consumption on the second molar. Shikwa Guhuho 60, 11201134.
20.Koike, H (1962) Studies on caries incidence in the first molar in relation to amount of sugar consumption on primary school children in Kyoto city. Bull Tokyo Dent Coll 3, 4456.
21.Jamel, H, Plasschaert, A & Sheiham, A (2004) Dental caries experience and availability of sugars in Iraqi children before and after the United Nations sanctions. Int Dent J 54, 2125.
22.Mejàre, I, Kallestal, C, Stenlund, Het al. (1998) Caries development from 11 to 22 years of age: a prospective radiographic study. Caries Res 32, 1016.
23.Mejàre, H, Stenlund, C & Zelezny-Holmlund, C (2004) Caries incidence and lesion progression from adolescence to young adulthood: a prospective 15-year cohort study in Sweden. Caries Res 38, 130141.
24.Food and Agriculture Organization of the United Nations (2013) FAO food balance tables. http://faostat.fao.org/site/368/default.aspx#ancor (accessed August 2013).
25.Sheiham, A (1967) The prevalence of dental caries in Nigerian populations. Br Dent J 123, 144148.
26.Holloway, PJ (1963) Dental disease in Tristan da Cunha. Br Dent J 115, 1925.
27.Fisher, FJ (1968) A field survey of dental caries, periodontal disease and enamel defects in Tristan da Cunha. Br Dent J 125, 447453.
28.Downer, MC (1999) Caries experience and sucrose availability: an analysis of the relationship in the United Kingdom over fifty years. Community Dent Health 16, 1821.
29.Masood, M, Masood, Y & Newton, T (2012) Impact of national income and inequality on sugar and caries relationship. Caries Res 46, 581588.
30.Toverud, G (1957) The influence of war and post-war conditions on the teeth of Norwegian schoolchildren. Millbank Mem Fund Q 35, 127–196, 373459.
31.Schulerud, A (1950) Dental Caries and Nutrition During Wartime in Norway. Oslo: Fabritius and Sonners trykkeri.
32.Knowles, EM (1946) The effects of enemy occupation on the dental condition of children in the Channel Islands. Monthly Min Health 1946, August, 162167.
33.Buttner, W (1971) Zuckeraufnahme und karies. In Grundfragen der Ernährungswissenschaft, pp. 175–191 [HD Cremer, editor]. Freiburg im Breisgau: Rombach. Cited by Marthaler TM (1979) In Health and Sugar Substitutes. Proceedings of ERGOB Conference on Sugar Substitutes, p. 27 [B Guggenheim, editor]. Basel: Karger.
34.Petersson, GH & Bratthall, D (1996) The caries decline: a review of reviews. Eur J Oral Sci 104, 436443.
35.Kawashita, Y, Kitamura, M & Saito, T (2012) Monitoring time-related trends in dental caries in permanent teeth in Japanese national surveys. Int Dent J 62, 100105.
36.Broadbent, JM, Thomson, WM & Poulton, R (2006) Progression of dental caries and tooth loss between the third and fourth decades of life: a birth cohort study. Caries Res 40, 459465.
37.Slade, GD, Sanders, AE, Do, Let al. (2013) Effects of fluoridated drinking water on dental caries in Australian adults. J Dent Res 92, 376382.
38.Whelton, H, Crowley, E, O’Mullane, Det al. (2007) Oral Health of Irish Adults 2000–2002 – Final Report – April. Dublin: Department of Health and Children.
39.Fejerskov, O (2004) Changing paradigms in concepts on dental caries: consequences for oral health care. Caries Res 38, 182191.
40.Batchelor, P & Sheiham, A (2004) Grouping of tooth surfaces by susceptibility to caries: a study in 5–16 year-old children. BMC Oral Health 4, 2.
41.Korhonen, M, Käkilehto, T & Larmas, M (2003) Tooth-by-tooth survival analysis of the first caries attack in different age cohorts and health centers in Finland. Acta Odontol Scand 61, 15.
42.Sognnaes, RF (1948) Analysis of wartime reduction of dental caries in European children. Am J Dis Child 75, 792821.
43.Miyazaki, H & Morimoto, M (1996) Changes in caries prevalence in Japan. Eur J Oral Sci 104, 452458.
44.Silverstein, SJ, Knapp, JF, Kircos, Let al. (1983) Dental caries prevalence in children with a diet free of refined sugar. Am J Public Health 73, 11961199.
45.Szpunar, SM, Eklund, SA & Burt, BA (1995) Sugar consumption and caries risk in schoolchildren with low caries experience. Community Dent Oral Epidemiol 23, 142146.
46.Rodrigues, CS & Sheiham, A (2000) The relationships between dietary guidelines, sugar intake and caries in primary teeth in low income Brazilian 3 year olds: a longitudinal study. Int J Paediatr Dent 10, 4755.
47.Routtinen, S, Karjalainen, S, Pienihakkinen, Ket al. (2004) Sucrose intake since infancy and dental health in 10-year-old children. Caries Res 38, 142148.
48.Anon. (1982) Global goals for oral health by the year 2000. Fédération Dentaire Internationale. Int Dent J 32, 7477.
49.Sheiham, A & Sabbah, W (2010) Using universal patterns of caries for planning and evaluating dental care. Caries Res 44, 141150.
50.Xiaoqiu, Qi (2008) Report of Third National Survey of Oral Health Status in China. Beijing: People’s Medical Publishing House (in Chinese).
51.Hugoson, A, Koch, G, Helkimo, ANet al. (2008) Caries prevalence and distribution in individuals aged 3–20 years in Jönköping, Sweden, over a 30-year period (1973–2003). Int J Paediatr Dent 18, 1826.
52.Hugoson, A & Koch, G (2008) Thirty year trends in the prevalence and distribution of dental caries in Swedish adults (1973–2003). Swed Dent J 32, 5768.
53.Bernabé, E & Sheiham, A (2014) Extent of differences in dental caries in permanent teeth between childhood and adulthood in 26 countries. Int Dent J (In the Press).
54.Thomson, WM (2004) Dental caries experience in older people over time: what can the large cohort studies tell us? Br Dent J 196, 8992.
55.Groeneveld, A (1985) Longitudinal study of prevalence of enamel lesions in a fluoridated and non-fluoridated area. Community Dent Oral Epidemiol 13, 159163.
56.Slade, GD (1997) Measuring Oral Health and Quality of Life. Chapel Hill, NC: University of North Carolina.
57.Yee, R & Sheiham, A (2002) The burden of restorative dental treatment for children in Third World Countries. Int Dent J 52, 710.
58.US Department of Health and Human Services (2000) Oral Health in America: A Report of the Surgeon General. Rockville, MD: US DHHS, National Institute of Dental and Craniofacial Research, NIH.
59.Casamassimo, PS, Thikkurissy, S, Edelstein, BLet al. (2009) Beyond the dmft: the human and economic cost of early childhood caries. J Am Dent Assoc 140, 650657.
60.Pongpichit, B, Sheiham, A, Pikhart, Het al. (2008) Time absent from school due to dental conditions and dental care in Thai schoolchildren. J Public Health Dent 68, 7681.
61.Ratnayake, N & Ekanayake, L (2005) Prevalence and impact of oral pain in 8-year-old children in Sri Lanka. Int J Paediatr Dent 15, 105112.
62.Naidoo, S, Chikte, UME & Sheiham, A (2001) Prevalence and impact of dental pain in 8–10-year-olds in the Western Cape. S Afr Dent J 56, 521523.
63.Sheiham, A (2006) Dental caries affects body weight, growth and quality of life in pre-school children. Br Dent J 201, 625626.
64.Acs, G, Lodolini, G, Kaminski, Set al. (1992) Effect of nursing caries on body weight in a pediatric population. Pediatr Dent 14, 302305.
65.Monse, B, Duijster, D, Sheiham, Aet al. (2012) The effects of extraction of pulpally involved primary teeth on weight, height and BMI in underweight Filipino children. BMC Public Health 12, 725.
66.Alkarimi, HA, Watt, R, Pikhart, Het al. (2012) Impact of treating dental caries on schoolchildren’s anthropometric, dental, satisfaction and appetite outcomes: a randomized controlled trial. BMC Public Health 12, 706.
67.Bagramian, RA, Garcia–Godoy, F & Volpe, AR (2009) The global increase in dental caries. A pending public health crisis. Am J Dent 22, 38.
68.Monse, B, Heinrich-Weltzie, R, Benzian, Het al. (2010) PUFA – an index of clinical consequences of untreated dental caries. Community Dent Oral Epidemiol 38, 7782.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed