Skip to main content Accessibility help
×
×
Home

Protein/energy ratios of current diets in developed and developing countries compared with a safe protein/energy ratio: implications for recommended protein and amino acid intakes

  • D Joe Millward (a1) and Alan A Jackson (a2)

Abstract

Revised estimates of protein and amino acid requirements are under discussion by the Food and Agriculture Organization (FAO)/World Health Organizaion (WHO), and have been proposed in a recent report on Dietary Reference Intakes (DRIs) from the USA. The nature and magnitude of these requirements are not entirely resolved, and no consideration has been given to the potential influence of metabolic adaptation on dietary requirements. We have examined the implications of these new values, and of the conceptual metabolic framework in which they are used, for defining the nutritional adequacy of protein intakes in developed and developing countries. We have expressed proposed values for protein requirements in relation to energy requirements, predicted for physical activity levels of 1.5, 1.75 and 2.0 times basal metabolic rate, in order to generate reference ratios for protein energy/total energy (reference P/E ratio) as a function of age, body weight, gender and physical activity level. Proposed values for amino acid requirements have been used to adjust the available digestible P/E ratio of foods and diets for protein quality. Focusing on the diets of UK omnivores and vegetarians and on diets in India, the risk of protein deficiency is evaluated from a comparison of P/E ratios of metabolic requirements with protein-quality-adjusted P/E ratios of intakes. A qualitative and conservative estimate of risk of deficiency is made by comparing the adjusted P/E ratio of the intake with a reference P/E ratio calculated for age, body weight, gender and physical activity according to FAO/WHO/United Nations University. A semi-quantitative estimate of risk of deficiency has also been made by the cut point approach, calculated as the proportion of the intake distribution below the mean P/E ratio of the requirement. Values for the quality-adjusted P/E ratio of the diet range from 0.126 for the UK omnivore diet to 0.054 for a rice-based diet of adults in West Bengal, which is lysine-limited, falling to 0.050 for 1-year-old children. The reference P/E ratio for men and women increases with age, is higher for females than males, is higher for small compared with large adults at any age and decreases with physical activity. Thus if a particular diet is potentially limiting in protein, protein deficiency is most likely in large, elderly sedentary women followed by the adolescent female and least likely in moderately active young children, the opposite of what has usually been assumed. Within the currently accepted framework, the diets do not meet the protein needs of the entire population of the UK, have a significant risk of deficiency throughout India for all except extremely active small adults, and are grossly inadequate for all population groups, apart from physically active young children in West Bengal, regardless of body weight or level of food intake. The lysine limitation of the cereal-based Indian diets is dependent on the choice of lysine requirement values from the published range. We consider that the value selected is too high, because of uncertainties and inconsistencies in the approaches used. A more appropriate choice from the lower end of the range would remove the lysine limitation of cereal-based diets, and reduce some of the perceived risk of deficiency. However, diets remain limited by the amount of digestible protein for many population groups, especially in West Bengal. In the context of risk management, one option would be to accept the current values and the conceptual metabolic framework within which they have been derived. This would have major implications for the supplies of high-quality protein to the developing countries. An alternative option would be to re-evaluate the currently proposed values for the requirements for protein and amino acids. We conclude that the choice of values for the adult lysine requirement should be re-evaluated and that serious consideration should be given to the extent to which adaptive mechanisms might enable the metabolic requirement for protein to be met from current intakes. This will entail a better understanding of the relationships between dietary protein and health.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Protein/energy ratios of current diets in developed and developing countries compared with a safe protein/energy ratio: implications for recommended protein and amino acid intakes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Protein/energy ratios of current diets in developed and developing countries compared with a safe protein/energy ratio: implications for recommended protein and amino acid intakes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Protein/energy ratios of current diets in developed and developing countries compared with a safe protein/energy ratio: implications for recommended protein and amino acid intakes
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email D.Millward@surrey.ac.uk

References

Hide All
1World Health Organization (WHO). Preparation and Use of Food-Based Dietary Guidelines. Report of a Joint Food and Agriculture Organization/WHO Consultation. Technical Report Series No. 880. Geneva: WHO, 1998.
2Food and Agriculture Organization (FAO)/World Health Organization (WHO)/United Nations University (UNU). Energy and Protein Requirements. Report of a Joint FAO/WHO/UNU Expert Consultation. Technical Report Series No. 724. Geneva: WHO, 1985; 150–60.
3Millward, DJ, Bowtell, JL, Pacy, P, Rennie, MJ. Physical activity, protein metabolism and protein requirements. Proceedings of the Nutrition Society 1994; 53: 223–40.
4Waterlow, JC. Nutritional adaptation in man: general introduction and concepts. American Journal of Clinical Nutrition 1990; 51: 259–63.
5Hegsted, DM. From chick nutrition to nutrition policy. Annual Review of Nutrition 2000; 20: 119.
6Young, VR, Borgonha, S. Nutritional adaptation (genetic, physiological and behavioural): implications for requirements. In: Fitzpatrick, DW, Anderson, JE, L'Abbé, ML, eds. From Nutritional Science to Nutrition Process for Better Global Health. Ottawa: Canadian Federation of Biological Societies 1998; 57160.
7Jackson, AA. Limits of adaptation to high dietary protein intakes. European Journal of Clinical Nutrition 1999; 53(Suppl. 1): S4452.
8James, WPT, Schofield, EC. Human Energy Requirements. Oxford: Oxford University Press, 1990.
9Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). Washington, DC: National Academy Press, 2002.
10Rand, WM, Pellett, PL, Young, VR. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. American Journal of Clinical Nutrition 2003; 77: 109–27.
11Schofield, WN, Schofield, C, James, WPT. Basal metabolic rate: review and prediction. Human Nutrition: Clinical Nutrition 1985; 39C: 196.
12Jackson, AA, Margetts, BM. Protein intakes in the adult population of the UK. International Journal of Food Science and Nutrition 1993; 44: 95104.
13Pellett, PL. World essential; amino acid supply with special attention to South-East Asia. Food and Nutrition Bulletin 1996; 17: 204–34.
14Food and Agriculture Organization, (FAO)/World Health Organization. Protein Quality Evaluation in Human Diets. FAO Food and Nutrition Paper 51. Rome: FAO, 1991.
15Rosegrant, MW, Leach, N, Gerpacio, RV. Alternative futures for world cereal and meat consumption. Proceedings of the Nutrition Society 1999; 58: 219–34.
16Graham, GG, Morales, E, Placko, RP, Maclean, WC. Nutritive value of brown and black beans for infants and small children. American Journal of Clinical Nutrition 1979; 32: 2362–6.
17Graham, GG, Lembcke, J, Morales, E. Quality-protein maize as the sole source of dietary protein and fat for rapidly growing young children. Pediatrics 1979; 85: 8591.
18Maclean, WC, De Romana, GL, Placko, RP, Graham, GG. Protein quality and digestibility of sorghum in preschool children: balance studies and plasma free amino acids. Journal of Nutrition 1981; 111: 1928–6.
19MacFarlane, G, Cummings, JH. The colonic flora, fermentation, and large bowel digestive function. In: Phillips, S, Pemberton, JH, Shorter, RG, eds. The Large Intestine: Physiology, Pathophysiology and Disease. New York: Raven Press, 1991; 5192.
20Fuller, MF, Milne, A, Harris, CI, Reid, TMS, Keenan, R. Amino acid losses in ileostomy fluid on a protein-free diet. American Journal of Clinical Nutrition 1994; 59: 70–3.
21Jackson, AA. Salvage of urea nitrogen in the large bowel: functional significance in metabolic control and adaptation. Biochemical Society Transactions 1998; 26: 231–6.
22Metges, CC. Contribution of microbial amino acids to amino acid homeostasis of the host. Journal of Nutrition 2000; 130: 1857S–64S.
23Millward, DJ, Forrester, T, Ah-Sing, E, Yeboah, N, Gibson, N, Badaloo, A et al. The transfer of 15N from urea to lysine in the human infant. British Journal of Nutrition 2000; 83: 505–12.
24Millward, DJ. Nutrition Discussion Forum. Urine nitrogen as an independent validatory measure of dietary intake: potential errors due to variation in magnitude and type of protein intake. British Journal of Nutrition 1997; 77: 141–4.
25Bingham, SA. Nutrition Discussion Forum. Urine nitrogen as an independent validatory measure of protein intake. British Journal of Nutrition 1997; 77: 144–8.
26Millward, DJ. The nutritional value of plant based diets in relation to human amino acid and protein requirements. Proceedings of the Nutrition Society 1999; 58: 249–60.
27Rand, WM, Young, VR. Statistical analysis of N balance data with reference to the lysine requirement in adults. Journal of Nutrition 1999; 129: 1920–6.
28Dewey, KG, Beaton, G, Fjeld, C, Lonnerdal, B, Reeds, P. Protein requirements of infants and children. European Journal of Clinical Nutrition 1996; 50: 5119–50.
29Kurpad, AV, El-Khoury, AE, Beaumier, L, Srivatsa, A, Kuriyan, R, Raj, T et al. . An initial assessment, using 24-h [13C]leucine kinetics, of the lysine requirement of healthy adult Indian subjects. American Journal of Clinical Nutrition 1998; 67: 5866.
30Kurpad, AV, Raj, T, EI-Khoury, A, Beaumier, L, Kuriyan, R, Srivatsa, A et al. Lysine requirements of healthy adult Indian subjects, measured by an indicator amino acid balance technique. American Journal of Clinical Nutrition 2001; 73: 900–7.
31Kurpad, AV, Regan, MM, Raj, T, EI-Khoury, A, Kuriyan, R, Vaz, M et al. Lysine requirement of healthy adult Indian subjects receiving long-term feeding, measured with a 24-h indicator amino acid oxidation and balance technique. American Journal of Clinical Nutrition 2002; 76: 404–12.
32Zello, GA, Pencharz, PB, Ball, RO. Dietary lysine requirement of young adult males determined by oxidation of L-[1-13C]phenylalanine. American Journal of Physiology 1993; 264: E677–85.
33Duncan, AM, Ball, RO, Pencharz, PB. Lysine requirement of adult males is not affected by decreasing dietary protein. American Journal of Clinical Nutrition 1996; 64: 718–25.
34Kriengsinyos, W, Wykes, LJ, Ball, RO, Pencharz, PB. Oral and intravenous tracer protocols of the indicator amino acid oxidation method provide the same estimate of the lysine requirement in healthy men. Journal of Nutrition 2002; 132: 2251–7.
35Millward, DJ, Fereday, A, Gibson, NR, Pacy, PJ. Human adult protein and amino acid requirements: [1-13C]leucine balance evaluation of the efficiency of utilization and apparent requirements for wheat protein and lysine compared with milk protein in healthy adults. American Journal of Clinical Nutrition 2000; 72: 112–21.
36Millward, DJ, Fereday, A, Gibson, NR, Cox, MC, Pacy, PJ. Efficiency of utilization of wheat and milk protein and apparent lysine requirements determined by a single-meal [1-13C]leucine balance protocol. American Journal of Clinical Nutrition 2002; 76: 1326–34.
37Butte, NF, Hopkinson, JM, Wong, WW, Smith, EO, Ellis, KJ. Body composition during the first 2 years of life: an updated reference. Pediatric Research 2000; 47: 578–85.
38Ellis, KJ, Shypailo, RJ, Abrams, SA, Wong, WW. The reference child and adolescent models of body composition. A contemporary comparison. Annals of the New York Academy of Sciences 2000; 904: 374–82.
39Platt, BS, Miller, DS, Payne, PR. Protein values of human food Recent Advances in Human Nutrition. In: Brock, JF, ed. Recent Advances in Human Nutrition. Boston, MA: Little Brown 1961; 351–74.
40 Institute of Medicine. Dietary Reference Intakes: Application in Dietary Assessment [online], 2000. Available at http://www.nap.edu/books/0309071836/html.
41Beaton, GH. Criteria of an adequate diet. In: Shils, ME, Olson, JA, Shike, M, eds. Modern Nutrition in Health and Disease, 8th ed. Philadelpia, PA: Lea & Febiger, 1994; 1491–505.
42Beaton, GH. Recommended dietary intakes: individuals and population. In: Shils, ME, Olson, JA, Shike, M, Ross, AC, eds. Modern Nutrition in Health and Disease, 9th ed. Baltimore MD: Williams & Wilkins, 1999; 1705–25.
43Henderson, L, Gregory, J, Irving, K, Swan, G. The National Diet and Nutrition Survey: Adults aged 19 to 64 years. Vol. 2. Energy, Protein, Carbohydrate, Fat and Alcohol Intake. London: Office for National Statistics and Food Standards Agency 2003; (http://www.foodstandards.gov.uk/multimedia/pdfs/ndnsprintedreport.pdf).
44Torun, B, Davies, PSW, Livingstone, MBE, Paolisso, M, Sackett, R, Spur, GB. Energy requirements and dietary energy recommendations for children and adolescents 1 to 18 years old. European Journal of Clinical Nutrition 1996; 50(Suppl. 1) S3781.
45Hayter, J, Henry, CJK. A re-examination of BMR predictive equations. European Journal of Clinical Nutrition 1994; 48: 702–10.
46Shetty, PS, Henry, CJ, Black, AE, Prentice, AM. Energy requirements of adults: an update on basal metabolic rates (BMRs) and physical activity levels (PALs). European Journal of Clinical Nutrition 1996; 50 (Suppl. 1) S1123.
47Young, VR, Scrimshaw, NS, Pellett, PL. Significance of dietary protein source in human nutrition: animal and/or plant proteins? In: Waterlow, JC, Armstrong, DG, Fowden, L, Riley, R, eds. Feeding a World Population of More than Eight Billion People: A Challenge to Science. New York: Oxford University Press in association with Rank Prize Funds, 1998; 205–21.
48Food and Agriculture Organization (FAO)/World Health Organization (WHO). Energy and Protein Requirements. Report of a Joint FAO/WHO Ad Hoc Expert Committee Technical Report Series No. 522. Geneva: WHO, 1973.
49Jones, EM, Bauman, CA, Reynolds, MS. Nitrogen balances in women maintained on various levels of lysine. Journal of Nutrition 1956; 60: 549–59.
50Young, VR. Nutritional balance studies: indicators of human requirements or adaptive mechanisms. Journal of Nutrition 1986; 116: 700–3.
51Millward, DJ, Jackson, AA, Price, G, Rivers, JPW. Human amino acid and protein requirements: current dilemmas and uncertainties. Nutrition Research Reviews 1989; 2: 109–32.
52Bolourchi, S, Friedmann, CM, Mickelsen, O. Wheat flour as a source of protein for human subjects. American Journal of Clinical Nutrition 1968; 21: 827–35.
53Edwards, CH, Booker, LK, Rumph, CH, Wright, WG, Ganapathy, SN. Utilization of wheat by adult man: nitrogen metabolism, plasma amino acids and lipids. American Journal of Clinical Nutrition 1971; 24: 181–93.
54Millward, DJ. Metabolic demands for amino acids and the human dietary requirement: Millward and Rivers (1988) evisited. Journal of Nutrition 1998; 128(Suppl. 12): 2563S–76S.
55Millward, DJ. An adaptive metabolic demand model for protein and amino acid requirements. British Journal of Nutrition 2003; 90: 249–60.
56Millward, DJ. A protein-stat mechanism for the regulation of growth and maintenance of the lean-body mass. Nutrition Research Reviews 1995; 8: 93120.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed