Skip to main content Accessibility help
×
×
Home

Receiver-operating characteristics of adiposity for metabolic syndrome: the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study

  • May A Beydoun (a1), Marie T Fanelli Kuczmarski (a2), Youfa Wang (a3), Marc A Mason (a4), Michele K Evans (a1) and Alan B Zonderman (a1)...
Abstract
Objective

To assess the predictive values of various adiposity indices for metabolic syndrome (MetS) among adults using baseline data from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) cohort.

Design

In a cross-sectional study, BMI, waist circumference (WC), body composition by dual-energy X-ray absorptiometry (DEXA) and metabolic risk factors such as TAG, HDL cholesterol, blood pressure, fasting glucose and insulin, uric acid and C-reactive protein were measured. Receiver-operating characteristic (ROC) curves and logistic regression analyses were conducted.

Setting

Baltimore, Maryland.

Subjects

White and African-American US adults (n 1981), aged 30–64 years.

Results

In predicting risk of MetS using obesity-independent National Cholesterol Education Program Adult Treatment Panel III criteria, percentage total body fat mass (TtFM) assessed using DEXA measuring overall adiposity had no added value over WC. This was true among both men (area under the ROC curve (AUC) = 0·680 v. 0·733 for TtFM and WC, respectively; P < 0·05) and women (AUC = 0·581 v. 0·686). Percentage rib fat mass (RbFM) was superior to TtFM only in women for MetS (AUC = 0·701 and 0·581 for RbFM and TtFM, respectively; P < 0·05), particularly among African-American women. Elevated percentage leg fat mass (LgFM) was protective against MetS among African-American men. Among white men, BMI was inferior to WC in predicting MetS. Optimal WC cut-off points varied across ethnic–sex groups and differed from those recommended by the National Institutes of Health/North American Association for the Study of Obesity.

Conclusions

The study provides evidence that WC is among the most powerful tools to predict MetS, and that optimal cut-off points for various indices including WC may differ by sex and race.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Receiver-operating characteristics of adiposity for metabolic syndrome: the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Receiver-operating characteristics of adiposity for metabolic syndrome: the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Receiver-operating characteristics of adiposity for metabolic syndrome: the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Email baydounm@mail.nih.gov
Footnotes
Hide All

Co-senior authors.

Footnotes
References
Hide All
1.National Institutes of Health (2001) Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Executive Summary. Bethesda, MD: NIH.
2.Ford, ES (2005) Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care 28, 17691778.
3.Qiao, Q (2006) Comparison of different definitions of the metabolic syndrome in relation to cardiovascular mortality in European men and women. Diabetologia 49, 28372846.
4.Thomas, GN, Schooling, CM, McGhee, SM et al. (2007) Metabolic syndrome increases all-cause and vascular mortality: the Hong Kong Cardiovascular Risk Factor Study. Clin Endocrinol (Oxf) 66, 666671.
5.Wassink, AM, van der Graaf, Y, Olijhoek, JK et al. (2008) Metabolic syndrome and the risk of new vascular events and all-cause mortality in patients with coronary artery disease, cerebrovascular disease, peripheral arterial disease or abdominal aortic aneurysm. Eur Heart J 29, 213223.
6.Lazarus, R, Baur, L, Webb, K et al. (1996) Body mass index in screening for adiposity in children and adolescents: systematic evaluation using receiver operating characteristic curves. Am J Clin Nutr 63, 500506.
7.Sardinha, LB, Going, SB, Teixeira, PJ et al. (1990) Receiver operating characteristic analysis of body mass index, triceps skinfold thickness, and arm girth for obesity screening in children and adolescents. Am J Clin Nutr 70, 10901095.
8.Taylor, RW, Jones, IE, Williams, SM et al. (2000) Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3–19 y. Am J Clin Nutr 72, 490495.
9.Mei, Z, Grummer-Strawn, LM, Pietrobelli, A et al. (2002) Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Am J Clin Nutr 75, 978985.
10.Taylor, RW, Keil, D, Gold, EJ et al. (1998) Body mass index, waist girth, and waist-to-hip ratio as indexes of total and regional adiposity in women: evaluation using receiver operating characteristic curves. Am J Clin Nutr 67, 4449.
11.Evans, EM, Rowe, DA, Racette, SB et al. (2006) Is the current BMI obesity classification appropriate for black and white postmenopausal women? Int J Obes (Lond) 30, 837843.
12.Svendsen, OL (2003) Should measurement of body composition influence therapy for obesity? Acta Diabetol 40, Suppl. 1, S250S253.
13.Richelsen, B & Pedersen, SB (1995) Associations between different anthropometric measurements of fatness and metabolic risk parameters in non-obese, healthy, middle-aged men. Int J Obes Relat Metab Disord 19, 169174.
14.Tai, ES, Ho, SC, Fok, AC et al. (1999) Measurement of obesity by anthropometry and bioelectric impedance analysis: correlation with fasting lipids and insulin resistance in an Asian population. Ann Acad Med Singapore 28, 445450.
15.Nakanishi, N, Nakamura, K, Suzuki, K et al. (2000) Associations of body mass index and percentage body fat by bioelectrical impedance analysis with cardiovascular risk factors in Japanese male office workers. Ind Health 38, 273279.
16.Warne, DK, Charles, MA, Hanson, RL et al. (1995) Comparison of body size measurements as predictors of NIDDM in Pima Indians. Diabetes Care 18, 435439.
17.Tulloch-Reid, MK, Williams, DE, Looker, HC et al. (2003) Do measures of body fat distribution provide information on the risk of type 2 diabetes in addition to measures of general obesity? Comparison of anthropometric predictors of type 2 diabetes in Pima Indians. Diabetes Care 26, 25562561.
18.Nagaya, T, Yoshida, H, Takahashi, H et al. (1999) Body mass index (weight/height2) or percentage body fat by bioelectrical impedance analysis: which variable better reflects serum lipid profile? Int J Obes Relat Metab Disord 23, 771774.
19.De Lorenzo, F, Mukherjee, M, Kadziola, Z et al. (1998) Association of overall adiposity rather than body mass index with lipids and procoagulant factors. Thromb Haemost 80, 603606.
20.Reeder, BA, Senthilselvan, A, Despres, JP et al. (1997) The association of cardiovascular disease risk factors with abdominal obesity in Canada. Canadian Heart Health Surveys Research Group. CMAJ 157, Suppl. 1, S39S45.
21.Rissanen, P, Hamalainen, P, Vanninen, E et al. (1997) Relationship of metabolic variables to abdominal adiposity measured by different anthropometric measurements and dual-energy X-ray absorptiometry in obese middle-aged women. Int J Obes Relat Metab Disord 21, 367371.
22.von Eyben, FE, Mouritsen, E, Holm, J et al. (2003) Intra-abdominal obesity and metabolic risk factors: a study of young adults. Int J Obes Relat Metab Disord 27, 941949.
23.Wannamethee, SG, Shaper, AG, Morris, RW et al. (2005) Measures of adiposity in the identification of metabolic abnormalities in elderly men. Am J Clin Nutr 81, 13131321.
24.Bosy-Westphal, A, Geisler, C, Onur, S et al. (2006) Value of body fat mass vs anthropometric obesity indices in the assessment of metabolic risk factors. Int J Obes (Lond) 30, 475483.
25.Hyun, YJ, Kim, OY, Jang, Y et al. (2008) Evaluation of metabolic syndrome risk in Korean premenopausal women: not waist circumference but visceral fat. Circ J 72, 13081315.
26.Lee, K, Lee, S & Kim, YJ (2008) Waist circumference, dual-energy X-ray absorptiometrically measured abdominal adiposity, and computed tomographically derived intra-abdominal fat area on detecting metabolic risk factors in obese women. Nutrition 24, 625631.
27.Bray, GA, Jablonski, KA, Fujimoto, WY et al. (2008) Relation of central adiposity and body mass index to the development of diabetes in the Diabetes Prevention Program. Am J Clin Nutr 87, 12121218.
28.Wang, Y, Rimm, EB, Stampfer, MJ et al. (2005) Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr 81, 555563.
29.Grundy, SM, Cleeman, JI, Daniels, SR et al. (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112, 27352752.
30.Zhu, S, Wang, Z, Shen, W et al. (2003) Percentage body fat ranges associated with metabolic syndrome risk: results based on the third National Health and Nutrition Examination Survey (1988–1994). Am J Clin Nutr 78, 228235.
31.Wallace, TM, Levy, JC & Matthews, DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27, 14871495.
32.Matthews, DR, Hosker, JP, Rudenski, AS et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412419.
33.Anon (2003) Handbook of Diagnostic Tests, 3rd ed. Philadelphia, PA: Lippincott, Williams & Wilkins.
34.Ridker, PM, Cushman, M, Stampfer, MJ et al. (1997) Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 336, 973979.
35.National Institutes of Health, National Heart, Lung, and Blood Institute & North American Association for the Study of Obesity (2000) The Practical Guide: Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. Bethesda, MD: NIH.
36.World Health Organization (1979) The ICD-9 Classification of Mental and Behavioral Disorders: Diagnostic Criteria for Research. Geneva: WHO.
37.Albeck, MJ & Borgesen, SE (1990) ROC-curve analysis. A statistical method for the evaluation of diagnostic tests. Ugeskr Laeger 152, 16501653.
38.Soreide, K (2009) Receiver-operating characteristic (ROC) curve analysis in diagnostic, prognostic and predictive biomarker research. J Clin Pathol 62, 15.
39.DeLong, ER, DeLong, DM & Clarke-Pearson, DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837845.
40.Lahmann, PH, Lissner, L, Gullberg, B et al. (2002) A prospective study of adiposity and all-cause mortality: the Malmo Diet and Cancer Study. Obes Res 10, 361369.
41.Vazquez, G, Duval, S, JrJacobs, DR et al. (2007) Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol Rev 29, 115128.
42.Meisinger, C, Doring, A, Thorand, B et al. (2006) Body fat distribution and risk of type 2 diabetes in the general population: are there differences between men and women? The MONICA/KORA Augsburg cohort study. Am J Clin Nutr 84, 483489.
43.Woo, J, Ho, SC, Yu, AL et al. (2002) Is waist circumference a useful measure in predicting health outcomes in the elderly? Int J Obes Relat Metab Disord 26, 13491355.
44.Moreno, LA, Pineda, I, Rodriguez, G et al. (2002) Waist circumference for the screening of the metabolic syndrome in children. Acta Paediatr 91, 13071312.
45.Bouguerra, R, Alberti, H, Smida, H et al. (2007) Waist circumference cut-off points for identification of abdominal obesity among the Tunisian adult population. Diabetes Obes Metab 9, 859868.
46.Ness-Abramof, R & Apovian, CM (2008) Waist circumference measurement in clinical practice. Nutr Clin Pract 23, 397404.
47.Maison, P, Byrne, CD, Hales, CNet al. (2001) Do different dimensions of the metabolic syndrome change together over time? Evidence supporting obesity as the central feature. Diabetes Care 24, 1758–1763.
48.Palaniappan, L, Carnethon, MR, Wang, Y et al. (2004) Predictors of the incident metabolic syndrome in adults: the Insulin Resistance Atherosclerosis Study. Diabetes Care 27, 788793.
49.Andreoli, A, Scalzo, G, Masala, S et al. (2009) Body composition assessment by dual-energy X-ray absorptiometry (DXA). Radiol Med 114, 286300.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed