Skip to main content Accessibility help
×
×
Home

Traditional food diversity predicts dietary quality for the Awajún in the Peruvian Amazon

  • ML Roche (a1) (a2), HM Creed-Kanashiro (a3), I Tuesta (a4) and HV Kuhnlein (a1) (a2)

Abstract

Objective

Our goal was to assess the potential for evaluating strengths of the Awajún traditional food system using dietary assessment, a traditional food diversity score and ranking of local foods.

Design

The method was used for dietary data obtained from mothers and children in the Awajún culture of the Peruvian Amazon where >90% of the dietary energy is derived from local, traditional food. Traditional food diversity scores were calculated from repeat 24-hour recalls. Group mean intakes of energy, fat, protein, iron, vitamin A and vitamin C from each food item were used to rank foods by nutrient contribution.

Setting

The study took place in six remote communities along the lower Cenepa River in the Amazonas District of Peru, South America.

Subjects

Dietary data were collected from 49 Awajún mothers and 34 children aged 3–6 years, representative of the six communities.

Results

Higher traditional food diversity was associated with greater protein, fibre, vitamin and mineral intakes when controlling for energy (partial correlations = 0.37 to 0.64). Unique sources for iron, total vitamin A and vitamin C were found in the Awajún traditional food system.

Conclusions

A traditional food diversity score was a useful tool for predicting nutrient adequacy for the Awajún. Promotion of the Awajún traditional food system should focus on dietary diversity and unique nutrient-dense local foods.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Traditional food diversity predicts dietary quality for the Awajún in the Peruvian Amazon
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Traditional food diversity predicts dietary quality for the Awajún in the Peruvian Amazon
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Traditional food diversity predicts dietary quality for the Awajún in the Peruvian Amazon
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email harriet.kuhnlein@mcgill.ca

References

Hide All
1 Kuhnlein, HV, Receveur, O. Dietary change and traditional food systems of Indigenous Peoples. Annual Review of Nutrition 1996; 16: 417442.
2 Kuhnlein, HV, Erasmus, B, Kalafatic, C. Indigenous Peoples’ consultation on the right to food: Declaration of Atitlan, Guatemala. SCN News 2002; 24: 7475.
3 Johns, T, Sthapit, BR. Biocultural diversity in the sustainability of developing-country food systems. Food and Nutrition Bulletin 2004; 25: 143155.
4 World Health Organization (WHO)/Food and Agriculture Organization of the United Nations. Preparation and Use of Food-based Dietary Guidelines. Geneva: Nutrition Programme, WHO, 1996.
5 Ruel, MT. Operationalizing dietary diversity: a review of measurement issues and research priorities. Journal of Nutrition 2003; 133 (Suppl.): 3911S3926S.
6 Drewnowski, A, Henderson, SA, Driscoll, A, Rolls, BJ. The dietary variety score: assessing diet quality in healthy young and older adults. Journal of the American Dietetic Association 1997; 97: 266271.
7 Mirmiran, P, Azadbakht, L, Esmaillzadeh, A, Azizi, F. Dietary diversity score in adolescents – a good indicator of the nutritional adequacy of diets: Tehran lipid and glucose study. Asia Pacific Journal of Clinical Nutrition 2004; 13: 5660.
8 Hatloy, A, Torheim, LE, Oshaug, A. Food variety. A good indicator of nutritional adequacy of the diet? A case study from an urban area in Mali, West Africa. European Journal of Clinical Nutrition 1998; 52: 891898.
9 Torheim, LE, Ouattara, F, Diarra, MM, Thiam, FD, Barikmo, I, Hatloy, A, et al. Nutrient adequacy and dietary diversity in rural Mali: association and determinants. European Journal of Clinical Nutrition 2004; 58: 594604.
10 Murphy, SP, Foote, JA, Wilkens, LR, Basiotis, PP, Carlson, A, White, KKL, et al. Simple measures of dietary variety are associated with improved dietary quality. Journal of the American Dietetic Association 2006; 106: 425429.
11 Berlin, EA, Markell, EK. An assessment of the nutritional and health status of an Aguaruna Jívaro community, Amazonas, Peru. Ecology of Food and Nutrition 1977; 6: 6981.
12 Sistema de Información sobre Comunidades Nativas Tituladas del Perú (SICNA). Datos de Población de la Cuenca del Cenepa Provincia Condorcanqui. Departamento Amazonas. Lima: Instituto del Bien Común, 1999.
13 Basiotis, PB, Welsh, SO, Cronin, FJ, Kelsay, JL, Mertz, W. Number of days of food intake records required to estimate individual and group nutrient intakes with defined confidence. Journal of Nutrition 1987; 117: 16381641.
14 Cypel, YS, Guenther, PM, Petot, GJ. Validity of portion-size measurement aids: a review. Journal of the American Dietetic Association 1997; 97: 289292.
15 US Department of Agriculture. Agricultural Research Service Nutrient Data Laboratory Home Page [online], 2004. Available at http://www.nal.usda.gov/fnic/foodcomp/search/. Accessed ?.
16 Wu Leung, WT, Butrum, RR, Chang, FH, Rao, MN, Polacchi, W. Food Composition Table for Use in East Asia. Rome/Washington, DC: Food and Agriculture Organization of the United Nations/US Department of Health, Education, and Welfare, 1972.
17 Wu Leung, WT, Flores, M. INCAP–ICNND Food Composition Table for Use in Latin America. Guatemala City/Bethesda, MD: Institute of Nutrition of Central America and Panama/National Institutes of Health, 1961.
18 Herrera NA, Hernández FA, Fachin RN, Robles NG. La Composición de los Alimentos Autoctonos. Lima: Laboratorios de Bromatología y Bioquímica, Instituto de Nutrición, Institutos Nacionales de Salud and Ministerio de Salud, undated.
19 Sims, J, Kuhnlein, HV. Indigenous Peoples Participatory Health Research. Planning and Management. Preparing Research Agreements. Geneva: World Health Organization, 2003.
20 Kye, S, Lee, H, Kim, BH, Yoo, W, Sung, MK, Lee, HJ. Dietary variety and nutrient intake by 24-hour recall in Korean college students. Nutritional Sciences 2004; 7: 9297.
21 Maunder, EMW, Matji, J, Hlatshwayo-Molea, T. Enjoy a variety of foods – difficult but necessary in developing countries. South African Journal of Clinical Nutrition 2001; 14: S711.
22 Roche ML, Creed-Kanashiro HM, Tuesta I, Kuhnlein HV. Traditional food system provides dietary quality for the Awajún in the Peruvian Amazon. Ecology of Food and Nutrition 2007; in press.
23 Instituto de Investigación Nutritcional (IIN). Tabla de Composición de Alimentos. Lima: IIN, 2004.
24 Solomons, NW, Orozco, M. Alleviation of vitamin A deficiency with palm fruit and its products. Asia Pacific Journal of Clinical Nutrition 2003; 12: 373384.
25 Brown, MF. Una paz incierta, historia y cultura de las comunidades aguarunas frente al impacto de la carretera marginal. Lima: Centro Amazonico de Antropologia y Aplicacion Pratica, 1984.
26 Ramos-Elorduy, J, Pino Moreno, JM, Escamilla Prado, E, Alvarado Perez, M, Lagunez Otero, J, Ladron de Guevara, O. Nutritional value of edible insects from the State of Oaxaca, Mexico. Journal of Food Composition and Analysis 1997; 10: 142157.
27 Finke, MD. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology 2002; 21: 269285.
28 Paoletti, MG, Buscardo, E, Vander Jagt, DJ, Pastuszyn, A, Pizzoferrato, L, Huang, YS, et al. Nutrient content of earthworms consumed by Ye’Kuana Amerindians of the Alto Orinoco of Venezuela. Proceedings of the Royal Society 2003; 270: 249257.
29 Dufour, DL. Insects as food: a case study from the northwest Amazon. American Anthropologist 1987; 89: 383396.
30 Paoletti, MG, Dufour, DL, Cerda, H, Torres, F, Pizzoferrato, L, Pimentel, D. The importance of leaf- and litter-feeding invertebrates as sources of animal protein for the Amazonian Amerindians. Proceedings of the Royal Society 2000; 267: 22472252.
31 Bennett, EL. Is there a link between wild meat and food security? Conservation Biology 2002; 16: 590592.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed