Skip to main content Accessibility help
×
×
Home

Validity and calibration of the FFQ used in the Melbourne Collaborative Cohort Study

  • Julie K Bassett (a1), Dallas R English (a1) (a2), Michael T Fahey (a3), Andrew B Forbes (a3), Lyle C Gurrin (a2), Julie A Simpson (a2), Maree T Brinkman (a1), Graham G Giles (a1) (a2) (a3) and Allison M Hodge (a1)...

Abstract

Objective

To evaluate the reliability and validity of the FFQ administered to participants in the follow-up of the Melbourne Collaborative Cohort Study (MCCS), and to provide calibration coefficients.

Design

A random sample stratified by country of birth, age, sex and BMI was selected from MCCS participants. Participants completed two FFQ and three 24 h recalls over 1 year. Reliability was evaluated by intraclass correlation coefficients (ICC). Validity coefficients (VC) were estimated from structural equation models and calibration coefficients obtained from regression calibration models.

Setting

Adults born in Australia, Greece or Italy.

Subjects

Nine hundred and sixty-five participants consented to the study; of these, 459 participants were included in the reliability analyses and 615 in the validity and calibration analyses.

Results

The FFQ showed good repeatability for twenty-three nutrients with ICC ranging from 0·66 to 0·80 for absolute nutrient intakes for Australian-born and from 0·51 to 0·74 for Greek/Italian-born. For Australian-born, VC ranged from 0·46 (monounsaturated fat) to 0·83 (Ca) for nutrient densities, comparing well with other studies. For Greek/Italian-born, VC were between 0·21 (Na) and 0·64 (riboflavin). Calibration coefficients for nutrient densities ranged from 0·39 (retinol) to 0·74 (Mg) for Australian-born and from 0·18 (Zn) to 0·54 (riboflavin) for Greek/Italian-born.

Conclusions

The FFQ used in the MCCS follow-up study is suitable for estimating energy-adjusted nutrients for Australian-born participants. However, its performance for estimating intakes is poorer for southern European migrants and alternative dietary assessment methods ought to be considered if dietary data are to be measured in similar demographic groups.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Validity and calibration of the FFQ used in the Melbourne Collaborative Cohort Study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Validity and calibration of the FFQ used in the Melbourne Collaborative Cohort Study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Validity and calibration of the FFQ used in the Melbourne Collaborative Cohort Study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email julie.bassett@cancervic.org.au

References

Hide All
1. Australian Institute of Health and Welfare (2014) Australia’s Health 2014. Australia’s Health Series no. 14. Catalogue no. AUS 178. Canberra: AIHW.
2. Subar, AF, Kipnis, V, Troiano, RP et al. (2003) Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: the OPEN study. Am J Epidemiol 158, 113.
3. Kaaks, RJ (1997) Biochemical markers as additional measurements in studies of the accuracy of dietary questionnaire measurements: conceptual issues. Am J Clin Nutr 65, 4 Suppl., 1232S1239S.
4. Freedman, LS, Schatzkin, A, Midthune, D et al. (2011) Dealing with dietary measurement error in nutritional cohort studies. J Natl Cancer Inst 103, 10861092.
5. Fahey, MT, Forbes, AB & Hodge, AM (2014) Correcting for the bias caused by exposure measurement error in epidemiological studies. Respirology 19, 979984.
6. Kipnis, V, Carroll, RJ, Freedman, LS et al. (1999) Implications of a new dietary measurement error model for estimation of relative risk: application to four calibration studies. Am J Epidemiol 150, 642651.
7. Thompson, FE, Kipnis, V, Midthune, D et al. (2008) Performance of a food-frequency questionnaire in the US NIH–AARP (National Institutes of Health–American Association of Retired Persons) Diet and Health Study. Public Health Nutr 11, 183195.
8. Rosner, B, Willett, W & Spiegelman, D (1989) Correction of logistic regression relative risk estimates and confidence intervals for systematic within‐person measurement error. Stat Med 8, 10511069.
9. Freedman, LS, Schatzkin, A, Thiebaut, AC et al. (2007) Abandon neither the food frequency questionnaire nor the dietary fat–breast cancer hypothesis. Cancer Epidemiol Biomarkers Prev 16, 13211322.
10. Prentice, RL, Tinker, LF, Huang, Y et al. (2013) Calibration of self-reported dietary measures using biomarkers: an approach to enhancing nutritional epidemiology reliability. Curr Atheroscler Rep 15, 353.
11. Slimani, N, Kaaks, R, Ferrari, P et al. (2002) European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study: rationale, design and population characteristics. Public Health Nutr 5, 11251145.
12. Gonzalez, CA, Jakszyn, P, Pera, G et al. (2006) Meat intake and risk of stomach and esophageal adenocarcinoma within the European Prospective Investigation Into Cancer and Nutrition (EPIC). J Natl Cancer Inst 98, 345354.
13. Gonzalez, CA, Pera, G, Agudo, A et al. (2006) Fruit and vegetable intake and the risk of stomach and oesophagus adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Int J Cancer 118, 25592566.
14. Leenders, M, Sluijs, I, Ros, MM et al. (2013) Fruit and vegetable consumption and mortality: European prospective investigation into cancer and nutrition. Am J Epidemiol 178, 590602.
15. Norat, T, Bingham, S, Ferrari, P et al. (2005) Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition. J Natl Cancer Inst 97, 906916.
16. Giles, GG & English, DR (2002) The Melbourne Collaborative Cohort Study. IARC Sci Publ 156, 6970.
17. Wong, M & Day, NE (2000) Validation studies in epidemiology: the relative precision of different designs. J Epidemiol Biostat 5, 331337.
18. Conway, JM, Ingwersen, LA, Vinyard, BT et al. (2003) Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. Am J Clin Nutr 77, 11711178.
19. Food Standards Australia New Zealand (2010) NUTTAB 2010. http://www.foodstandards.gov.au/science/monitoringnutrients/nutrientables/nuttab/Pages/NUTTAB-2010-electronic-database-files.aspx (accessed August 2013).
20. Food Standards Australia New Zealand (2007) AUSNUT 2007. http://www.foodstandards.gov.au/science/monitoringnutrients/ausnut/Pages/ausnut2007.aspx (accessed August 2013).
21. US Department of Agriculture, Agricultural Research Service (2013) USDA National Nutrient Database for Standard Reference, Release 26. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/ba/bhnrc/ndl (accessed August 2013).
22. Logan, R & Spiegelman, D (2004) The SAS% BLINPLUS Macro. http://www.hsph.harvard.edu/faculty/donna-spiegelman/software/blinplus-macro (accessed July 2015).
23. Freedman, L, Commins, J, Moler, J et al. (2014) Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. Am J Epidemiol 180, 172188.
24. Freedman, LS, Commins, JM, Moler, JE et al. (2015) Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for potassium and sodium intake. Am J Epidemiol 181, 473487.
25. Ireland, PD (1996) Measuring dietary intake in a Melbourne cohort of men and women born in Australia, Italy and Greece. PhD Thesis, Monash University.
26. Heerstrass, D, Ocke, M, Bueno-de-Mesquita, H et al. (1998) Underreporting of energy, protein and potassium intake in relation to body mass index. Int J Epidemiol 27, 186193.
27. Lissner, L, Troiano, R, Midthune, D et al. (2007) OPEN about obesity: recovery biomarkers, dietary reporting errors and BMI. Int J Obes (Lond) 31, 956961.
28. Carithers, TC, Talegawkar, SA, Rowser, ML et al. (2009) Validity and calibration of food frequency questionnaires used with African-American adults in the Jackson Heart Study. J Am Diet Assoc 109, 11841193.
29. Jaceldo-Siegl, K, Knutsen, SF, Sabaté, J et al. (2010) Validation of nutrient intake using an FFQ and repeated 24 h recalls in black and white subjects of the Adventist Health Study-2 (AHS-2). Public Health Nutr 13, 812819.
30. Stram, DO, Hankin, JH, Wilkens, LR et al. (2000) Calibration of the dietary questionnaire for a multiethnic cohort in Hawaii and Los Angeles. Am J Epidemiol 151, 358370.
31. Cade, J, Burley, V, Warm, D et al. (2004) Food-frequency questionnaires: a review of their design, validation and utilisation. Nutr Res Rev 17, 522.
32. Beaton, GH, Milner, J, McGuire, V et al. (1983) Source of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. Carbohydrate sources, vitamins, and minerals. Am J Clin Nutr 37, 986995.
33. Hodge, A, Patterson, AJ, Brown, WJ et al. (2000) The Anti Cancer Council of Victoria FFQ: relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust N Z J Public Health 24, 576583.
34. McLennan, W & Podger, AS (1998) National Nutrition Survey: Nutrient Intakes and Physical Measurements, Australia, 1995. Canberra: Australian Bureau of Statistics.
35. Kipnis, V, Subar, AF, Midthune, D et al. (2003) Structure of dietary measurement error: results of the OPEN biomarker study. Am J Epidemiol 158, 1421.
36. O’Donnell, MJ, Yusuf, S, Mente, A et al. (2011) Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA 306, 22292238.
37. Carroll, RJ, Ruppert, D, Stefanski, LA et al. (2006) Measurement Error in Nonlinear Models, 2nd ed. Boca Raton, FL: Chapman & Hall.
38. Kaaks, R, Ferrari, P, Ciampi, A et al. (2002) Uses and limitations of statistical accounting for random error correlations, in the validation of dietary questionnaire assessments. Public Health Nutr 5, 969976.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed