Skip to main content Accessibility help
×
Home

Validity of carbohydrate, glycaemic index and glycaemic load data obtained using a semi-quantitative food-frequency questionnaire

  • Alan Winston Barclay (a1), Victoria Mary Flood (a1) (a2), Jennie Cecile Brand-Miller (a1) and Paul Mitchell (a2)

Abstract

Objective

To assess the ability of a food-frequency questionnaire (FFQ) to rank Australians according to their intake of total carbohydrate, sugar, starch, fibre, glycaemic index (GI) and glycaemic load (GL).

Design

Cross-sectional sample from a population cohort.

Setting

Two postcode areas west of Sydney, Australia.

Subjects

From 1992 to 1994, a total of 2868 older Australians provided dietary data using a 145-item Willett-derived FFQ. A representative sub-sample of 78 subjects completed three 4-day weighed food records (WFRs). Pearson and Spearman correlations, Bland–Altman plots and weighted kappa values were calculated.

Results

Compared with the WFR, the FFQ provided higher mean estimates of all nutrients except starch and GI. All Pearson and/or Spearman correlations were greater than 0.5, except for GL. For GI, sugar, starch and fibre, the regression lines from the Bland–Altman analysis indicated a non-significant linear trend (P = 0.07, P = 0.36, P = 0.28 and P = 0.10, respectively). For GL and total carbohydrate, however, there was a significant linear trend (P = 0.006 and P < 0.0001, respectively), indicating that as the GL and carbohydrate intake of individuals increased, so did the magnitude of the error between the FFQ and WFR. Weighted kappa values all indicated moderate to good agreement, with the exception of GL which was only fair. The proportions of subjects correctly classified within one quintile for all of the nutrients were over 50% and gross misclassification was low (<10%).

Conclusion

This FFQ was able to rank individuals according to their intakes of total carbohydrate, sugar, starch, fibre and GI, but not as well for GL.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Validity of carbohydrate, glycaemic index and glycaemic load data obtained using a semi-quantitative food-frequency questionnaire
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Validity of carbohydrate, glycaemic index and glycaemic load data obtained using a semi-quantitative food-frequency questionnaire
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Validity of carbohydrate, glycaemic index and glycaemic load data obtained using a semi-quantitative food-frequency questionnaire
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email: paul_mitchell@wmi.usyd.edu.au

References

Hide All
1Willett, W. Nutritional Epidemiology, 2nd ed. New York: Oxford University Press, 1998.
2Burley, V, Cade, J, Margetts, B, Thompson, R, Warm, D. Consensus Document on the Development, Validation and Utilisation of Food Frequency Questionnaires. London: Ministry of Agriculture, Fisheries and Food, 2000; 62 pp.
3Bland, JM, Altman, DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 325 (8476): 307310.
4Masson, LF, McNeill, G, Tomany, JO, Simpson, JA, Peace, HS, Wei, L, et al. Statistical approaches for assessing the relative validity of a food-frequency questionnaire: use of correlation coefficients and the kappa statistic. Public Health Nutrition 2003; 6 (3): 313321.
5O'Brien, K. Living Dangerously: Australians with Multiple Risk Factors for Cardiovascular Disease. Bulletin No. 24. Canberra: Australian Institute of Health and Welfare, 2005.
6National Health and Medical Research Council. Food for Health: Dietary Guidelines for Australian Adults. Canberra: Commonwealth of Australia, 2003.
7Australian Bureau of Statistics (ABS). Causes of Death, Australia, 2005. Catalogue No. 3303.0. Canberra: ABS, 24 February 2005.
8Ma, Y, Olendzki, B, Chiriboga, D, Hebert, JR, Li, Y, Li, W, et al. Association between dietary carbohydrates and body weight. American Journal of Epidemiology 2005; 161 (4): 359367.
9Pawlak, DB, Kushner, JA, Ludwig, DS. Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals. Lancet 2004; 364 (9436): 778785.
10Ebbeling, CB, Leidig, MM, Sinclair, KB, Hangen, JP, Ludwig, DS. A reduced-glycemic load diet in the treatment of adolescent obesity. Archives of Pediatrics & Adolescent Medicine 2003; 157 (8): 773779.
11Spieth, LE, Harnish, JD, Lenders, CM, Raezer, LB, Pereira, MA, Hangen, SJ, et al. A low-glycemic index diet in the treatment of pediatric obesity. Archives of Pediatrics & Adolescent Medicine 2000; 154 (9): 947951.
12Salmeron, J, Ascherio, A, Rimm, EB, Colditz, GA, Spiegelman, D, Jenkins, DJ, et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997; 20 (4): 545550.
13Salmeron, J, Manson, JE, Stampfer, MJ, Colditz, GA, Wing, AL, Willett, WC. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA: Journal of the American Medical Association 1997; 277 (6): 472477.
14Schulze, MB, Liu, S, Rimm, EB, Manson, JE, Willett, WC, Hu, FB. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. American Journal of Clinical Nutrition 2004; 80 (2): 348356.
15Oh, K, Hu, FB, Cho, E, Rexrode, KM, Stampfer, MJ, Manson, JE, et al. Carbohydrate intake, glycemic index, glycemic load, and dietary fiber in relation to risk of stroke in women. American Journal of Epidemiology 2005; 161 (2): 161169.
16Liu, S, Willett, WC, Stampfer, MJ, Hu, FB, Franz, M, Sampson, L, et al. A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. American Journal of Clinical Nutrition 2000; 71 (6): 14551461.
17Amano, Y, Kawakubo, K, Lee, JS, Tang, AC, Sugiyama, M, Mori, K. Correlation between dietary glycemic index and cardiovascular disease risk factors among Japanese women. European Journal of Clinical Nutrition 2004; 58 (11): 14721478.
18Michaud, DS, Fuchs, CS, Liu, S, Willett, WC, Colditz, GA, Giovannucci, E. Dietary glycemic load, carbohydrate, sugar, and colorectal cancer risk in men and women. Cancer Epidemiology, Biomarkers & Prevention 2005; 14 (1): 138147.
19Higginbotham, S, Zhang, ZF, Lee, IM, Cook, NR, Giovannucci, E, Buring, JE, et al. Dietary glycemic load and risk of colorectal cancer in the Women's Health Study. Journal of the National Cancer Institute 2004; 96 (3): 229233.
20Franceschi, S, Dal Maso, L, Augustin, L, Negri, E, Parpinel, M, Boyle, P, et al. Dietary glycemic load and colorectal cancer risk. Annals of Oncology 2001; 12 (2): 173178.
21Silvera, SA, Jain, M, Howe, GR, Miller, AB, Rohan, TE. Dietary carbohydrates and breast cancer risk: a prospective study of the roles of overall glycemic index and glycemic load. International Journal of Cancer 2005; 114 (4): 653658.
22Frazier, AL, Li, L, Cho, E, Willett, WC, Colditz, GA. Adolescent diet and risk of breast cancer. Cancer Causes & Control 2004; 15 (1): 7382.
23Holmes, MD, Liu, S, Hankinson, SE, Colditz, GA, Hunter, DJ, Willett, WC. Dietary carbohydrates, fiber, and breast cancer risk. American Journal of Epidemiology 2004; 159 (8): 732739.
24Augustin, LS, Dal Maso, L, La Vecchia, C, Parpinel, M, Negri, E, Vaccarella, S, et al. Dietary glycemic index and glycemic load, and breast cancer risk: a case–control study. Annals of Oncology 2001; 12 (11): 15331538.
25Sheard, NF, Clark, NG, Brand-Miller, JC, Franz, MJ, Pi-Sunyer, FX, Mayer-Davis, E, et al. Dietary carbohydrate (amount and type) in the prevention and management of diabetes: a statement by the American Diabetes Association. Diabetes Care 2004; 27 (9): 22662271.
26Foster-Powell, K, Holt, SH, Brand-Miller, JC. International table of glycemic index and glycemic load values: 2002. American Journal of Clinical Nutrition 2002; 76 (1): 556.
27Attebo, K, Mitchell, P, Smith, W. Visual acuity and the causes of visual loss in Australia. The Blue Mountains Eye Study. Ophthalmology 1996; 103 (3): 357364.
28Smith, W, Mitchell, P, Reay, EM, Webb, K, Harvey, PW. Validity and reproducibility of a self-administered food frequency questionnaire in older people. Australian and New Zealand Journal of Public Health 1998; 22 (4): 456463.
29Mitchell, P, Smith, W, Wang, JJ, Cumming, RG, Leeder, SR, Burnett, L. Diabetes in an older Australian population. Diabetes Research and Clinical Practice 1998; 41 (3): 177184.
30Willett, WC, Sampson, L, Browne, ML, Stampfer, MJ, Rosner, B, Hennekens, CH, et al. The use of a self-administered questionnaire to assess diet four years in the past. American Journal of Epidemiology 1988; 127 (1): 188199.
31Flood, VM, Smith, WT, Webb, KL, Mitchell, P. Issues in assessing the validity of nutrients data obtained from a food-frequency questionnaire: folate and vitamin B12 examples. Public Health Nutrition 2004; 7 (6): 751756.
32Department of Community Services and Health. NUTTAB 90 Nutrient Data Table for Use in Australia. Canberra: Australian Government Publishing Service, 1990.
33Fleiss, JL. The Measurement of Interrater Agreement. Statistical Methods for Rates and Proportions. New York: Jon Wiley & Sons, 1981; 212236.
34Willett, W, Stampfer, MJ. Total energy intake: implications for epidemiologic analyses. American Journal of Epidemiology 1986; 124 (1): 1727.
35Brunner, E, Stallone, D, Juneja, M, Bingham, S, Marmot, M. Dietary assessment in Whitehall II: comparison of 7 d diet diary and food-frequency questionnaire and validity against biomarkers. British Journal of Nutrition 2001; 86 (3): 405414.
36Hodge, AM, English, DR, O'Dea, K, Giles, GG. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 2004; 27 (11): 27012706.
37Schulze, MB, Liu, S, Rimm, EB, Manson, JE, Willett, WC, Hu, FB. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. American Journal of Clinical Nutrition 2004; 80 (2): 348356.
38Zhang, C, Liu, S, Solomon, CG, Hu, FB. Dietary fiber intake, dietary glycemic load, and the risk for gestational diabetes mellitus. Diabetes Care 2006; 29 (10): 22232230.
39Meyer, KA, Kushi, LH, JrJacobs, DR, Slavin, J, Sellers, TA, Folsom, AR. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. American Journal of Clinical Nutrition 2000; 71 (4): 921930.
40Stevens, J, Ahn, K, Juhaeri, Houston, D, Steffan, L, Couper, D. Dietary fiber intake and glycemic index and incidence of diabetes in African-American and white adults: the ARIC study. Diabetes Care 2002; 25 (10): 17151721.
41Liu, S, Willett, WC, Stampfer, MJ, Hu, FB, Franz, M, Sampson, L, et al. A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. American Journal of Clinical Nutrition 2000; 71 (6): 14551461.
42van Dam, RM, Visscher, AW, Feskens, EJ, Verhoef, P, Kromhout, D. Dietary glycemic index in relation to metabolic risk factors and incidence of coronary heart disease: the Zutphen Elderly Study. European Journal of Clinical Nutrition 2000; 54 (9): 726731.
43Jonas, CR, McCullough, ML, Teras, LR, Walker-Thurmond, KA, Thun, MJ, Calle, EE. Dietary glycemic index, glycemic load, and risk of incident breast cancer in postmenopausal women. Cancer Epidemiology, Biomarkers & Prevention 2003; 12 (6): 573577.
44Cho, E, Spiegelman, D, Hunter, DJ, Chen, WY, Colditz, GA, Willett, WC. Premenopausal dietary carbohydrate, glycemic index, glycemic load, and fiber in relation to risk of breast cancer. Cancer Epidemiology, Biomarkers & Prevention 2003; 12 (11): 11531158.
45Higginbotham, S, Zhang, ZF, Lee, IM, Cook, NR, Buring, JE, Liu, S. Dietary glycemic load and breast cancer risk in the Women’s Health Study. Cancer Epidemiology, Biomarkers & Prevention 2004; 13 (1): 6570.
46Nielsen, TG, Olsen, A, Christensen, J, Overvad, K, Tjonneland, A. Dietary carbohydrate intake is not associated with the breast cancer incidence rate ratio in postmenopausal Danish women. Journal of Nutrition 2005; 135 (1): 124128.
47Giles, GG, Simpson, JA, English, DR, Hodge, AM, Gertig, DM, Macinnis, RJ, Hopper, JL. Dietary carbohydrate, fibre, glycaemic index, glycaemic load and the risk of postmenopausal breast cancer. International Journal of Cancer 2006; 118 (7): 18431847.
48Terry, PD, Jain, M, Miller, AB, Howe, GR, Rohan, TE. Glycemic load, carbohydrate intake, and risk of colorectal cancer in women: a prospective cohort study. Journal of the National Cancer Institute 2003; 95 (12): 914916.
49Oh, K, Willett, WC, Fuchs, CS, Giovannucci, EL. Glycemic index, glycemic load, and carbohydrate intake in relation to risk of distal colorectal adenoma in women. Cancer Epidemiology, Biomarkers & Prevention 2004; 13 (7): 11921198.
50Johnson, KJ, Anderson, KE, Harnack, L, Hong, CP, Folsom, AR. No association between dietary glycemic index or load and pancreatic cancer incidence in postmenopausal women. Cancer Epidemiology, Biomarkers & Prevention 2005; 14 (6): 15741575.
51Silvera, SA, Rohan, TE, Jain, M, Terry, PD, Howe, GR, Miller, AB. Glycemic index, glycemic load, and pancreatic cancer risk (Canada). Cancer Causes & Control 2005; 16 (4): 431436.
52Folsom, AR, Demissie, Z, Harnack, L. Glycemic index, glycemic load, and incidence of endometrial cancer: the Iowa Women's Health Study. Nutrition and Cancer 2003; 46 (2): 119124.
53Silvera, SA, Rohan, TE, Jain, M, Terry, PD, Howe, GR, Miller, AB. Glycaemic index, glycaemic load and risk of endometrial cancer: a prospective cohort study. Public Health Nutrition 2005; 8 (7): 912919.
54Larsson, SC, Bergkvist, L, Wolk, A. Glycemic load, glycemic index and carbohydrate intake in relation to risk of stomach cancer: a prospective study. International Journal of Cancer 2006; 118 (12): 31673169.
55Holmes, MD, Liu, S, Hankinson, SE, Colditz, GA, Hunter, DJ, Willett, WC. Dietary carbohydrates, fiber, and breast cancer risk. American Journal of Epidemiology 2004; 159 (8): 732739.
56Michaud, DS, Liu, S, Giovannucci, E, Willett, WC, Colditz, GA, Fuchs, CS. Dietary sugar, glycemic load, and pancreatic cancer risk in a prospective study. Journal of the National Cancer Institute 2002; 94 (17): 12931300.
57Tsai, CJ, Leitzmann, MF, Willett, WC, Giovannucci, EL. Dietary carbohydrates and glycaemic load and the incidence of symptomatic gall stone disease in men. Gut 2005; 54 (6): 823828.
58Tsai, CJ, Leitzmann, MF, Willett, WC, Giovannucci, EL. Glycemic load, glycemic index, and carbohydrate intake in relation to risk of cholecystectomy in women. Gastroenterology 2005; 129 (1): 105112.
59Chiu, CJ, Hubbard, LD, Armstrong, J, Rogers, G, Jacques, PF, JrChylack, LT, et al. Dietary glycemic index and carbohydrate in relation to early age-related macular degeneration. American Journal of Clinical Nutrition 2006; 83 (4): 880886.
60Schaumberg, DA, Liu, S, Seddon, JM, Willett, WC, Hankinson, SE. Dietary glycemic load and risk of age-related cataract. American Journal of Clinical Nutrition 2004; 80 (2): 489495.
61Chiu, CJ, Morris, MS, Rogers, G, Jacques, PF, JrChylack, LT, Tung, W, et al. Carbohydrate intake and glycemic index in relation to the odds of early cortical and nuclear lens opacities. American Journal of Clinical Nutrition 2005; 81 (6): 14111416.
62Liese, AD, Schulz, M, Fang, F, Wolever, TM, JrD'Agostino, RB, Sparks, KC, et al. Dietary glycemic index and glycemic load, carbohydrate and fiber intake, and measures of insulin sensitivity, secretion, and adiposity in the Insulin Resistance Atherosclerosis Study. Diabetes Care 2005; 28 (12): 28322838.
63Mayer-Davis, EJ, Dhawan, A, Liese, AD, Teff, K, Schulz, M. Towards understanding of glycaemic index and glycaemic load in habitual diet: associations with measures of glycaemia in the Insulin Resistance Atherosclerosis Study. British Journal of Nutrition 2006; 95 (2): 397405.
64Jain, MG, Harrison, L, Howe, GR, Miller, AB. Evaluation of a self-administered dietary questionnaire for use in a cohort study. American Journal of Clinical Nutrition 1982; 36 (5): 931935.
65Willett, WC, Sampson, L, Stampfer, MJ, Rosner, B, Bain, C, Witschi, J, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. American Journal of Epidemiology 1985; 122 (1): 5165.
66Tjonneland, A, Overvad, K, Haraldsdottir, J, Bang, S, Ewertz, M, Jensen, OM. Validation of a semiquantitative food frequency questionnaire developed in Denmark. International Journal of Epidemiology 1991; 20 (4): 906912.
67Mayer-Davis, EJ, Vitolins, MZ, Carmichael, SL, Hemphill, S, Tsaroucha, G, Rushing, J, et al. Validity and reproducibility of a food frequency interview in a Multi-Cultural Epidemiology Study. Annals of Epidemiology 1999; 9 (5): 314324.
68Munger, RG, Folsom, AR, Kushi, LH, Kaye, SA, Sellers, TA. Dietary assessment of older Iowa women with a food frequency questionnaire: nutrient intake, reproducibility, and comparison with 24-hour dietary recall interviews. American Journal of Epidemiology 1992; 136 (2): 192200.
69Barclay, AW, Brand-Miller, JC. Validity of glycemic index estimates in the Insulin Resistance Atherosclerosis Study: response to Liese et al. Diabetes Care 2006; 29 (7): 17181719.

Keywords

Related content

Powered by UNSILO

Validity of carbohydrate, glycaemic index and glycaemic load data obtained using a semi-quantitative food-frequency questionnaire

  • Alan Winston Barclay (a1), Victoria Mary Flood (a1) (a2), Jennie Cecile Brand-Miller (a1) and Paul Mitchell (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.