Skip to main content Accessibility help
×
Home

On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach

Published online by Cambridge University Press:  02 January 2013


Ewan Cameron
Affiliation:
Department of Physics, Swiss Federal Institute of Technology (ETH Zurich), CH-8093 Zurich, Switzerland. Email: cameron@phys.ethz.ch
Corresponding
E-mail address:

Abstract

I present a critical review of techniques for estimating confidence intervals on binomial population proportions inferred from success counts in small to intermediate samples. Population proportions arise frequently as quantities of interest in astronomical research; for instance, in studies aiming to constrain the bar fraction, active galactic nucleus fraction, supermassive black hole fraction, merger fraction, or red sequence fraction from counts of galaxies exhibiting distinct morphological features or stellar populations. However, two of the most widely-used techniques for estimating binomial confidence intervals — the ‘normal approximation’ and the Clopper & Pearson approach — are liable to misrepresent the degree of statistical uncertainty present under sampling conditions routinely encountered in astronomical surveys, leading to an ineffective use of the experimental data (and, worse, an inefficient use of the resources expended in obtaining that data). Hence, I provide here an overview of the fundamentals of binomial statistics with two principal aims: (I) to reveal the ease with which (Bayesian) binomial confidence intervals with more satisfactory behaviour may be estimated from the quantiles of the beta distribution using modern mathematical software packages (e.g. r, matlab, mathematica, idl, python); and (ii) to demonstrate convincingly the major flaws of both the ‘normal approximation’ and the Clopper & Pearson approach for error estimation.


Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2011

References

Agresti, A. & Coull, B. A., 1998, The American Statistician, 52, 2, 119Google Scholar
Baldry, I. K., Balogh, M. L., Bower, R. G., Glazebrook, K., Nicol, R. C., Bamford, S. P. & Budavari, T., 2006, MNRAS, 373, 469CrossRefGoogle Scholar
Burgasser, A. J., Kirkpatrick, J. D., Reid, N. I., Brown, M. E., Miskey, C. L. & Gizis, J. E., 2003, ApJ, 586, 512CrossRefGoogle Scholar
Brown, L. D., Cai, T. T. & DasGupta, A., 2001, Statistical Science, 16, 2101Google Scholar
Brown, L. D., Cai, T. T. & DasGupta, A., 2002, The Annals of Statistics, 30, 1, 160Google Scholar
Cameron, E. et al. , 2010, MNRAS, 409, 1, 346CrossRefGoogle Scholar
Clopper, C. J. & Pearson, E. S., 1934, Biometrika, 26, 404CrossRefGoogle Scholar
Conselice, C. J., Rajgor, S. & Myers, R., 2008, 386, 909Google Scholar
Cousins, R. D., Hymes, K. E. & Tucker, T., 2009, NIM, 612, 2, 388CrossRefGoogle Scholar
De Propris, R., Liske, J., Driver, S. P., Allen, P. D. & Cross, N. J. G., 2005, ApJ, 130, 1516CrossRefGoogle Scholar
Elmegreen, D. M., Elmegreen, B. G. & Bellin, A. D., 1990, ApJ, 364, 415CrossRefGoogle Scholar
Gehrels, N., 1986, ApJ, 303, 336CrossRefGoogle Scholar
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B., 2003, Bayesian Data Analysis, (New York: Chapman & Hall)Google Scholar
Hester, J. A., 2010, ApJ, 720, 191CrossRefGoogle Scholar
Ilbert, O. et al. , 2010, ApJ, 709, 644CrossRefGoogle Scholar
Kraft, R. P., Burrows, D. N. & Nousek, J. A., 1991, ApJ, 374, 344CrossRefGoogle Scholar
Quirin, W. L., 1978, Probability and Statistics (New York: Harper & Row Publishers)Google Scholar
López-Sanjuan, C., Balcells, M., Pérez-González, P. G., Barro, G., Gallego, J. & Zamorano, J., 2010, A&A, 518, 20Google Scholar
Nair, P. B. & Abraham, R. G., 2010, ApJL, 714, 2, L260CrossRefGoogle Scholar
Neyman, J., 1935, The Annals of Mathematical Statistics, 6, 111CrossRefGoogle Scholar
Rao, M. M. & Swift, R. J., 2006, Mathematics and Its Applications, 582Google Scholar
Ross, T. D., 2003, Computers in Biology and Medicine, 33, 509CrossRefGoogle Scholar
Santner, T. J., 1998, Teaching Statistics, 20, 2023CrossRefGoogle Scholar
van den Bergh, S., 2002, AJ, 124, 782CrossRefGoogle Scholar
Vollset, S. E., 1993, Statistics in Medicine, 12, 809CrossRefGoogle Scholar
Wald, A. & Wolfowitz, J., 1939, The Annals of Mathematical Statistics, 10, 105CrossRefGoogle Scholar

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 4
Total number of PDF views: 1274 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd December 2020. This data will be updated every 24 hours.

Access
Open access
Hostname: page-component-79f79cbf67-n2swh Total loading time: 13.219 Render date: 2020-12-02T10:34:53.868Z Query parameters: { "hasAccess": "1", "openAccess": "1", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 10:05:11 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *