Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-p4zth Total loading time: 0.207 Render date: 2021-08-01T05:40:24.947Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Climate and vegetation history from a 14,000-year peatland record, Kenai Peninsula, Alaska

Published online by Cambridge University Press:  20 January 2017

Miriam C. Jones
Affiliation:
Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, USA Department of Earth and Environmental Sciences, Lehigh University, 31 Williams Dr., Bethlehem, PA 18015, USA
Dorothy M. Peteet
Affiliation:
Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964, USA NASA/Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
Dorothy Kurdyla
Affiliation:
Lawrence Livermore Laboratories, Livermore, CA 94551, USA
Thomas Guilderson
Affiliation:
Lawrence Livermore Laboratories, Livermore, CA 94551, USA
Corresponding
E-mail address:

Abstract

Analysis of pollen, spores, macrofossils, and lithology of an AMS 14C-dated core from a subarctic fen on the Kenai Peninsula, Alaska reveals changes in vegetation and climate beginning 14,200 cal yr BP. Betula expansion and contraction of herb tundra vegetation characterize the Younger Dryas on the Kenai, suggesting increased winter snowfall concurrent with cool, sunny summers. Remarkable Polypodiaceae (fern) abundance between 11,500 and 8500 cal yr BP implies a significant change in climate. Enhanced peat preservation and the occurrence of wet meadow species suggest high moisture from 11,500 to 10,700 cal yr BP, in contrast to drier conditions in southeastern Alaska; this pattern may indicate an intensification and repositioning of the Aleutian Low (AL). Drier conditions on the Kenai Peninsula from 10,700 to 8500 cal yr BP may signify a weaker AL, but elevated fern abundance may have been sustained by high seasonality with substantial snowfall and enhanced glacial melt. Decreased insolation-induced seasonality resulted in climatic cooling after 8500 cal yr BP, with increased humidity from 8000 to 5000 cal yr BP. A dry interval punctuated by volcanic activity occurred between 5000 and 3500 cal yr BP, followed by cool, moist climate, coincident with Neoglaciation. Tsuga mertensiana expanded after ~ 1500 cal yr BP in response to the shift to cooler conditions.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Finney, B.P., Edwards, M.E., and Kelts, K.R. Lake-level reconstructions and paleohydrology of Birch Lake, Central Alaska, based on seismic reflection profiles and core transects. Quaternary Research 53, (2000). 154166.CrossRefGoogle Scholar
Ager, T.A. Holocene vegetational history of Alaska. Wright, H.E. Late-Quaternary Environments of the United States. The Holocene vol. 2, (1983). University of Minnesota Press, Minneapolis. 128141.Google Scholar
Ager, T.A. Holocene vegetation history of the Kachemak Bay area, Cook Inlet, South-central Alaska. Gough, L.P., Wilson, F.H. Geologic Studies in Alaska by the U.S. Geological Survey, 1998, U.S. Geological Survey, Professional Paper 1615, (2000). 147165.Google Scholar
Ager, T.A. Holocene vegetation history of the northern Kenai Mountains, south-central Alaska. Gough, L.P., Wilson, F.H. Geologic Studies in Alaska by the U.S. Geological Survey, 1999, U.S. Geological Survey Professional Paper 1633, (2001). 91107.Google Scholar
Anderson, L.L., Hu, F.S., Nelson, D.M., Petit, R.J., and Paige, K.N. Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proceedings of the National Academy of Sciences 103, (2006). 1244712450.CrossRefGoogle Scholar
Anderson, R.S., Jass, R.B., Berg, E., Toney, J.L., Hallett, D.J., de Fontaine, C.S., and DeVolder, A. Climate change and the development of boreal forest and fire regimes on the Kenai Lowlands, Alaska. The Holocene 16, (2006). 791803.CrossRefGoogle Scholar
Axford, Y., and Kaufman, D. Late glacial and Holocene glacier and vegetation fluctuations at Little Swift Lake, southwestern Alaska, U.S.A. Arctic, Antarctic, and Alpine Research 36, (2004). 139146.CrossRefGoogle Scholar
Berger, A.L. Long-term variations of daily isolation and Quaternary climatic changes. Journal of Atmospheric Sciences 35, (1978). 23622367.2.0.CO;2>CrossRefGoogle Scholar
Bigelow, N.H., and Edwards, M.E. A 14,000 yr paleoenvironmental record from Windmill Lake, Central Alaska: Lateglacial and Holocene vegetation in the Alaska Range. Quaternary Science Reviews 20, (2001). 203215.CrossRefGoogle Scholar
Bigelow, N.H., and Powers, R. Climate, vegetation, and archaeology 14,000–9000 cal yr BP in Central Alaska. Arctic Anthropology 38, (2001). 171195.Google Scholar
Birks, H.H. Aquatic macrophyte vegetation development in Krakenes Lake, western Norway, during the late-glacial and early-Holocene. Journal of Paleolimnology 23, (2000). 719.CrossRefGoogle Scholar
Birks, H.H. Plant macrofossils. Smol, J.P., Birks, H.J.B., Lose, W.M. Tracking Environmental Change Using Lake Sediments Vol. 3, (2001). Kluwer Academic Publishers, Dordrecht, the Netherlands. 4974.CrossRefGoogle Scholar
Brubaker, L.B., Anderson, P.M., and Hu, F.S. Vegetation ecotone dynamics in Southwest Alaska during the Late Quaternary. Quaternary Science Reviews 20, (2001). 175188.CrossRefGoogle Scholar
Brubaker, L.B., Anderson, P.M., Edwards, M.E., and Lohzkin, A.V. Beringia as a glacial refugium for boreal trees and shrubs: new perspectives from mapped pollen data. Journal of Biogeography 32, (2005). 833848.CrossRefGoogle Scholar
Chapin, F.S. III, Shaver, G.R., Giblin, A.E., Nadelhoffer, K.J., and Laundre, J.A. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76, (1995). 694711.CrossRefGoogle Scholar
Clymo, R.S. Ion exchange in Sphagnum and its relation to bog ecology. Annals of Botany 27, (1966). 309324.CrossRefGoogle Scholar
Engstrom, D.R., Hansen, B.C.S, Wright, H.E. Jr A possible Younger Dryas record in southeastern Alaska. Science 250, (1990). 13831385.CrossRefGoogle ScholarPubMed
Faegri, K., and Iverson, J. Textbook of Pollen Analysis. (1989). Chichester, John Wiley & Sons.Google Scholar
Grimm, E.C. TILIA and Tilia-Graph Software, Version 2.0. (1992). Illinois State Univesity, Google Scholar
Heusser, C.J., Heusser, L.E., and Peteet, D.M. Late-Quaternary climatic change on the American North Pacific coast. Nature 315, (1985). 485487.CrossRefGoogle Scholar
Hu, F.S., Brubaker, L.B., and Anderson, P.M. Postglacial vegetation and climate change in the Northern Bristol Bay Region, Southwestern Alaska. Quaternary Research 43, (1995). 382392.CrossRefGoogle Scholar
Hu, F.S., Brubaker, L.B., and Anderson, P.M. Boreal ecosystem development in the Northwestern Alaska Range since 11,000 yr. B.P. Quaternary Research 45, (1996). 188201.CrossRefGoogle Scholar
Hu, F.S., Lee, B.Y., Kaufman, D.S., Yoneji, S., Nelson, D.M., and Henne, P.D. Response of tundra ecosystem in southwestern Alaska to Younger-Dryas climatic oscillation. Global Change Biology 8, (2002). 11561163.CrossRefGoogle Scholar
Janssens, J.A. Ecology of Peatland Bryophytes and Paleoenvironmental Reconstruction of Peatlands Using Fossil Bryophytes. Methods Manual. (1990). Department of Ecology, Evolution, and Behavior, Univesity of Minnesota, Saint Paul, Minnesota, USA.Google Scholar
Jorgenson, M.T., Racine, C.H., Walters, J.C., and Osterkamp, T.E. Permafrost degradation and ecological changes associated with a warming climate in Central Alaska. Climatic Change 48, (2001). 551579.CrossRefGoogle Scholar
Kallel, N., Labeyrie, L.D., Arnold, M., Okada, H., Dudley, W.C., and Duplessy, J.C. Evidence of cooling during the Younger Dryas in the western North Pacific. Oceanologica Acta 11, (1988). 369375.Google Scholar
Kaufman, D.S., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P.J., Brubaker, L.B., Coats, L.L., Cwynar, L.C., Duvall, M.L., Dyke, A.S., Edwards, E., Eisner, W.R., Gajewski, K., Geirsdöttir, A., Hu, F.S., Jennings, A.E., Kaplan, M.R., Kerwin, M.W., Lozhkin, A.V., MacDonald, G.M., Miller, G.H., Mock, C.J., Oswald, W.W., Otto-Bliesner, B.L., Porinchu, D.F., Ruhland, K., Smol, J.P., Steig, E.J., and Wolfe, B.B. Holocene thermal maximum in the western Arctic (0–180°W). Quaternary Science Reviews 23, (2004). 529560.CrossRefGoogle Scholar
Klein, E., Berg, E.E., and Dial, R. Wetland drying and succession across the Kenai Peninsula Lowlands, south-central Alaska. Canadian Journal of Forestry Research 35, (2005). 19311941.CrossRefGoogle Scholar
Kokorowski, H.D., Anderson, P.M., Mock, C.J., and Lozhkin, A.V. A re-evaluation and spatial analysis of evidence for a Younger Dryas climate reversal in Beringia. Quaternary Science Reviews 27, (2008). 17101722.CrossRefGoogle Scholar
MacDonald, G.M., Beilman, D.W., Kremenetski, K.V., Sheng, Y., Smith, L.C., and Velichko, A.A. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314, (2006). 285288.CrossRefGoogle ScholarPubMed
Mikolajewicz, U., Crowley, T.J., Schiller, A., and Reinhard, V. Modeling teleconnections between the North Atlantic and North Pacific during the Younger Dryas. Nature 387, (1997). 384387.CrossRefGoogle Scholar
Mock, C.J., Bartlein, P.J., and Anderson, P.M. Atmospheric circulation patterns and spatial climatic variation in Beringia. International Journal of Climatology 10, (1998). 10851104.3.0.CO;2-K>CrossRefGoogle Scholar
Moritz, R.E., Bitz, C.M., and Steig, E.J. Dynamics of recent climate change in the Arctic. Science 297, (2002). 14971501.CrossRefGoogle ScholarPubMed
Oswald, W.W., Anderson, P.M., Brown, T.A., Brubaker, L.B., Hu, F.S., Lozhkin, A.V., Tinner, W., and Kaltenreider, P. Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments. The Holocene 15, (2005). 758767.CrossRefGoogle Scholar
Overland, J.E., Miletta, J.M., and Bond, N.A. Decadal variability of the Aleutian Low and its relation to high-latitude circulation. Journal of Climate 12, (1999). 15421549.2.0.CO;2>CrossRefGoogle Scholar
Peteet, D.M. Modern pollen rain and vegetational history of the Malaspina Glacier district, Alaska. Quaternary Research 25, (1986). 100120.CrossRefGoogle Scholar
Peteet, D.M., and Mann, D.H. Late-glacial vegetational, tephra, and climatic history of southwestern Kodiak Island, Alaska. Ecoscience 1, (1994). 255267.CrossRefGoogle Scholar
Peteet, D., Del Genio, A., and Lo, K.K. Sensitivity of northern hemisphere air temperatures and snow expansion to North Pacific sea surface temperatures in the Goddard Institute for Space Studies general circulation model. Journal of Geophysical Research 102, (1997). 781791.CrossRefGoogle Scholar
Reger, R.D., Sturmann, A.G., Berg, E.E., and Burns, P.A.C. Guidebook 8. A Guide to the Late Quaternary History of the Northern and Western Kenai Peninsula, Alaska. (2007). State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys, Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Ritchie, J.C., Cwynar, L.C., and Spear, R.W. Evidence from northwest Canada for an early Holocene Milankovitch thermal maximum. Nature 305, (1983). 126128.CrossRefGoogle Scholar
Sturm, M., Racine, C., and Tape, K. Increasing shrub abundance in the Arctic. Nature 411, (2001). 546547.CrossRefGoogle ScholarPubMed
Sturm, M., Schimel, J., Michaelson, G., Welker, J.M., Oberbauer, S.F., Liston, G.E., Fahnestock, J., and Romanovsky, V.E. Winter biological processes could help convert arctic tundra to shrubland. Bioscience 55, (2005). 1726.CrossRefGoogle Scholar
Trenberth, K.E., and Hurrell, J.W. Decadal atmospheric-ocean variations in the Pacific. Climate Dynamics 9, (1994). 303319.CrossRefGoogle Scholar
Troels-Smith, J. Karakterisering af lose jordater. Characterisation of unconsolidated sediments. Danmarks Geologiske Undersogelse 4/3, (1955). 173.Google Scholar
Viereck, L.A., Little, E.L. Jr., Little, E.L., and Argus, G.W. Alaska Trees and Shrubs. (2007). University of Alaska Press, 359 p Google Scholar
Walker, D.A., Binnian, E., Evans, B.M., Lederer, N.D., Nordstrand, E., and Webber, P.J. Terrain, vegetation and landscape evolution of the R4D research site, Brooks Range Foothills, Alaska. Holarctic Ecology 12, (1989). 238261.Google Scholar
Watts, W.A., and Winter, T.C. Plant macrofossils from Kirchner Marsh, Minnesota; a paleoecological study. Geological Society of America Bulletin 77, (1966). 13391359.CrossRefGoogle Scholar
Wiles, G.C., and Calkin, P.E. Late Holocene, high-resolution glacial chronologies and climate, Kenai Mountains, Alaska. Geological Society of America Bulletin 106, (1994). 281303.2.3.CO;2>CrossRefGoogle Scholar
Zazula, G.D., Telka, A.M., Harington, C.R., Schweger, C.E., and Mathewes, R.W. New spruce (Picea spp.) macrofossils from the Yukon Territory: implications for late Pleistocene refugia in eastern Beringia. Arctic 59, (2006). 391400.Google Scholar
35
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Climate and vegetation history from a 14,000-year peatland record, Kenai Peninsula, Alaska
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Climate and vegetation history from a 14,000-year peatland record, Kenai Peninsula, Alaska
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Climate and vegetation history from a 14,000-year peatland record, Kenai Peninsula, Alaska
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *