Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T16:06:17.243Z Has data issue: false hasContentIssue false

Comparison of temperature and humidity during MIS 11 and MIS 5e interglacials with the Holocene using stable isotopes in tufa deposits from northern France

Published online by Cambridge University Press:  22 December 2021

Julie Dabkowski*
Affiliation:
CNRS–Laboratoire de Géographie Physique: environnements quaternaires et actuels (UMR 8591 Paris 1–UPEC), 92195 Meudon Cedex, France
Nicole Limondin-Lozouet
Affiliation:
CNRS–Laboratoire de Géographie Physique: environnements quaternaires et actuels (UMR 8591 Paris 1–UPEC), 92195 Meudon Cedex, France
*
*Corresponding author at: CNRS–Laboratoire de Géographie Physique: environnements quaternaires et actuels (UMR 8591 Paris 1–UPEC), 1 place Aristide Briand, 92195 Meudon Cedex, France. E-mail address: julie.dabkowski@lgp.cnrs.fr (J. Dabkowski).

Abstract

Many recent palaeoclimatic studies have focused on Pleistocene interglacials, especially Marine Isotopic Stages (MIS) 5e and 11, as analogs to our modern interglacial (MIS 1). In continental area, archives allowing comparison between interglacials remain scarce. Calcareous tufa deposits, as they are characteristic of these periods and can provide long, almost continuous, palaeoclimatic records through their isotopic content, appear highly suitable for such investigation. In this paper, δ18O and δ13C values from the three well-dated tufas of Saint-Germain-le-Vasson, Caours, and La Celle are combined to compare temperature and moisture conditions prevailing during MIS 1, 5e, and 11, in the Paris Basin. Both Pleistocene interglacials, and especially their optima, appear stronger than the Holocene: MIS 11 was wetter and warmer than both the Holocene and MIS 5e, which itself experienced wetter conditions than the Holocene. These observations are consistent with palaeontological data from the studied sites, especially malacological assemblages, which record, as at other European tufa sites, a relative depletion of molluscan diversity during the Holocene compared with the Pleistocene (MIS 5 and 11) interglacials.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, J.E., 2006. Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth-Science Reviews 75, 85104.CrossRefGoogle Scholar
Andrews, J.E., Riding, R., Dennis, P.F., 1993. Stable isotopic compositions of Recent freshwater cyanobacterial carbonates from the British Isles: local and regional environmental controls. Sedimentology 40, 303314.CrossRefGoogle Scholar
Andrews, J.E., Riding, R., Dennis, P.F., 1997. The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 129, 171189.CrossRefGoogle Scholar
Antoine, P., Limondin Lozouet, N., Auguste, P., Locht, J.-L., Ghaleb, B., Reyss, J.-L., Escudé, E., et al. , 2006. Le tuf de Caours (Somme, France): mise en évidence d'une séquence eemienne et d'un site paléolithique associé. Quaternaire 17, 281320.CrossRefGoogle Scholar
Antoine, P., Limondin Lozouet, N., Chaussé, C., Lautridou, J.-P., Pastre, J.-F., Auguste, P., Bahain, J.-J., Falguères, C., Galehb, B., 2007. Pleistocene fluvial terraces from northern France (Seine, Yonne, Somme): synthesis, and new results from interglacial deposits. Quaternary Science Reviews 26, 27012723.CrossRefGoogle Scholar
Bahain, J.-J., Falguères, C., Dolo, J.-M., Antoine, P., Auguste, P., Limondin-Lozouet, N., Locht, J.-L., Tuffreau, A., Tissoux, H., Farkh, S., 2010. ESR/U-series dating of teeth recovered from well-stratigraphically age-controlled sequences from northern France. Quaternary Geochronology 5, 371375.CrossRefGoogle Scholar
Bowen, G.J., 2020. The Online Isotopes in Precipitation Calculator, Version 3.1. http://www.waterisotopes.org (accessed December 15, 2020).Google Scholar
Bowen, G.J., Revenaugh, J., 2003. Interpolating the isotopic composition of modern meteoric precipitation: isotopic composition of modern precipitation. Water Resources Research 39. https://doi.org/10.1029/2003WR002086.CrossRefGoogle Scholar
Capezzuoli, E., Gandin, A., Pedley, M., 2014. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of the art. Sedimentology 61, 121.CrossRefGoogle Scholar
Cheddadi, R., Mamakowa, K., Guiot, J., de Beaulieu, J.-L., Reille, M., Andrieu, V., Granoszewski, W., Peyron, O., 1998. Was the climate of the Eemian stable? A quantitative climate reconstruction from seven European pollen records. Palaeogeography, Palaeoclimatology, Palaeoecology 143, 7385.CrossRefGoogle Scholar
Dabkowski, J., 2014. High potential of calcareous tufas for integrative multidisciplinary studies and prospects for archaeology in Europe. Journal of Archaeological Science 52, 7283.CrossRefGoogle Scholar
Dabkowski, J., 2020. The late-Holocene tufa decline in Europe: myth or reality? Quaternary Science Reviews 230, 106141.CrossRefGoogle Scholar
Dabkowski, J., Limondin-Lozouet, N., Andrews, J., Marca-Bell, A., Antoine, P., 2016. Climatic and environmental dynamic during the Eemian recorded in a northern France tufa (Caours, Somme basin). Comparison with regional records. Quaternaire 27, 249261.CrossRefGoogle Scholar
Dabkowski, J., Limondin-Lozouet, N., Antoine, P., Andrews, J., Marca-Bell, A., Robert, V., 2012. Climatic variations in MIS 11 recorded by stable isotopes and trace elements in a French tufa (La Celle, Seine Valley): climatic variations in MIS 11 in a French tufa. Journal of Quaternary Science 27, 790799.CrossRefGoogle Scholar
Dabkowski, J., Limondin-Lozouet, N., Antoine, P., Marca-Bell, A., Andrews, J., 2011. Enregistrement des variations climatiques au cours des interglaciaires d'après l’étude des isotopes stables de la calcite de tufs calcaires pléistocènes du nord de la France: exemple des séquences de Caours (SIM 5e; Somme) et de La Celle-sur-Seine (SIM 11; Seine-et-Marne). Quaternaire 22, 275283.CrossRefGoogle Scholar
Darling, W.G., 2004. Hydrological factors in the interpretation of stable isotopic proxy data present and past: a European perspective. Quaternary Science Reviews 23, 743770.CrossRefGoogle Scholar
de Beaulieu, J.-L., Eicher, U., Monjuvent, G., 1994. Reconstruction of Middle Pleistocene palaeoenvironments based on pollen and stable isotope investigations at Val-de-Lans, Isère, France. Vegetation History and Archaeobotany 3, 127142.CrossRefGoogle Scholar
de Beaulieu, J.L., 1992. The last climatic cycle at La Grande Pile (Vosges, France). A new pollen profile. Quaternary Science Reviews 11, 431438.CrossRefGoogle Scholar
Field, M.H., de Beaulieu, J.-L., Guiot, J., Ponel, P., 2000. Middle Pleistocene deposits at La Côte, Val-de-Lans, Isère department, France: plant macrofossil, palynological and fossil insect investigations. Palaeogeography, Palaeoclimatology, Palaeoecology 159, 5383.CrossRefGoogle Scholar
Garnett, E.R., Andrews, J.E., Preece, R.C., Dennis, P.F., 2004. Climatic change recorded by stable isotopes and trace elements in a British Holocene tufa. Journal of Quaternary Science 19, 251262.CrossRefGoogle Scholar
Jolly-Saad, M.-C., Dupéron-Laudoueneix, M., Dupéron, J., 2007. Nouvelle étude des empreintes foliaires des tufs holsteiniens de La Celle-sous-Moret (Seine-et-Marne). Palaeontographica Abteilung B 276, 145160.CrossRefGoogle Scholar
Kühl, N., Litt, T., Schölzel, C., Hense, A., 2007. Eemian and Early Weichselian temperature and precipitation variability in northern Germany. Quaternary Science Reviews 26, 33113317.CrossRefGoogle Scholar
Lang, N., Wolff, E.W., 2011. Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Climate of the Past 7, 361380.CrossRefGoogle Scholar
Lautridou, J.-P., Auffret, J.-P., Baltzer, A., Clet, M., Lécolle, F., Lefebvre, D., Lericolais, G., et al. , 1999. Le fleuve Seine, le fleuve Manche. Bulletin de la Société Géologique de France 170, 545558.Google Scholar
Limondin-Lozouet, N., 2011. Successions malacologiques à la charnière Glaciaire/Interglaciaire: du modèle Tardiglaciaire-Holocène aux transitions du Pleistocène. Quaternaire 22, 211220.CrossRefGoogle Scholar
Limondin-Lozouet, N., Antoine, P., Auguste, P., Bahain, J.-J., Carbonel, P., Chaussé, C., et al. , 2006. Le tuf calcaire de La Celle-sur-Seine (Seine-et-Marne): nouvelles données sur un site clé du stade 11 dans le nord de la France. Quaternaire 17, 529.CrossRefGoogle Scholar
Limondin-Lozouet, N., Dabkowski, J., Antoine, P., 2020. Palaeoenvironmental dynamics of the MIS 11 interglacial in north-western Europe based on the malacological succession from La Celle (Seine Valley, France): relationship with glacial refugia and palaeobiodiversity. Palaeogeography, Palaeoclimatology, Palaeoecology 560, 110044.CrossRefGoogle Scholar
Limondin-Lozouet, N., Gauthier, A., Preece, R.C., 2005. Enregistrement des biocènoses de la première moitié de l'Holocène en contexte tufacé à Saint-Germain-le-Vasson (Calvados). Quaternaire 16, 255271.CrossRefGoogle Scholar
Limondin-Lozouet, N., Nicoud, E., Antoine, P., Auguste, P., Bahain, J.-J., Dabkowski, J., Dupéron, J., et al. , 2010. Oldest evidence of Acheulean occupation in the Upper Seine valley (France) from an MIS 11 tufa at La Celle. Quaternary International 223–224, 299311.CrossRefGoogle Scholar
Limondin-Lozouet, N., Preece, R.C., 2004. Molluscan successions from the Holocene tufa of St Germain-le-Vasson, Normandy (France) and their biogeographical significance. Journal of Quaternary Science 19, 5571.CrossRefGoogle Scholar
Limondin-Lozouet, N., Preece, R.C., 2014. Quaternary perspectives on the diversity of land snail assemblages from northwestern Europe. Journal of Molluscan Studies 80, 224237.CrossRefGoogle Scholar
Locht, J.L., Antoine, P., Auguste, P., Limondin-Lozouet, N., 2009. Caours “Les Prés,” Rapport triennal de fouille programmée. SRA Picardie, Amiens.Google Scholar
Locht, J.L., Dabkowski, J., Antoine, P., Auguste, P., Sévêque, N., Moreau, G., Vialet, A., Bertrand, B., 2017. Caours, Rapport triennal de fouille programmée 2015–2017. SRA Picardie, Amiens.Google Scholar
Mania, D., Mania, U., 2008. La stratigraphie et le Paléolithique du complexe saalien dans la région de la Saale et de l'Elbe. L'Anthropologie 112, 1547.CrossRefGoogle Scholar
Past Interglacials Working Group of PAGES, 2016. Interglacials of the last 800,000 years. Review of Geophysics 54, 162219.CrossRefGoogle Scholar
Pentecost, A., 1995. The quaternary travertine deposits of Europe and Asia Minor. Quaternary Science Reviews 14, 10051028.CrossRefGoogle Scholar
Pentecost, A., 2005. Travertine. Springer-Verlag, Berlin.Google Scholar
Pomerol, C., 1974. Le bassin de Paris. In: Debelmas, J. (ed), Géologie de La France. Doin, Paris. pp. 230258.Google Scholar
Ponel, P., 1995. Rissian, Eemian and Würmian Coleoptera assemblages from La Grande Pile (Vosges, France). Palaeogeography, Palaeoclimatology, Palaeoecology 114, 141.CrossRefGoogle Scholar
Ponel, P., Orgeas, J., Samways, M.J., Andrieu-Ponel, V., de Beaulieu, J.-L., Reille, M., Roche, P., Tatoni, T., 2003. 110000 years of Quaternary beetle diversity change. Biodiversity & Conservation 12, 20772089.CrossRefGoogle Scholar
Preece, R.C., 1991. Mapping snails in time: the prospect of elucidating the historical biogeography of the European malacofauna. In: Proceedings of the Xth International Malacological Congress, Tubingen, pp. 447479.Google Scholar
Reille, M., de Beaulieu, J.L., Svobodova, H., Andrieu-Ponel, V., Goeury, C., 2000. Pollen analytical biostratigraphy of the last five climatic cycles from a long continental sequence from the Velay region (Massif Central, France). Journal of Quaternary Science 15, 665685.3.0.CO;2-G>CrossRefGoogle Scholar
Rodet, J., 2007. Karst de la craie et aquifère de Normandie. European Journal of Water Quality 38, 1121.CrossRefGoogle Scholar
Rousseau, D.-D., 2003. The continental record of stage 11: a review. In: Droxler, A.W., Poore, R.Z., Burckle, L.H. (Eds.), Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question. Geophysical Monograph Series 137. American Geophysical Union, Washington, DC, pp. 213222.CrossRefGoogle Scholar
Rousseau, D.-D., Hatté, C., Duzer, D., Schevin, P., Kukla, G., Guiot, J., 2007. 15. Estimates of temperature and precipitation variations during the Eemian interglacial: new data from the grande pile record (GP XXI). In: Sirocko, F., Claussen, M., Sánchez Goñi, M.F., Litt, T. (eds), The Climate of Past Interglacials. Elsevier, Amsterdam, pp. 231338.CrossRefGoogle Scholar
Rousseau, D.-D., Puisségur, J.-J., Lécolle, F., 1992. West-European terrestrial molluscs assemblages of isotopic stage 11 (Middle Pleistocene): climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 92, 1529.CrossRefGoogle Scholar
Rousseau, D.D., Hatté, Ch., Guiot, J., Duzer, D., Schevin, P., Kukla, G., 2006. Reconstruction of the Grande Pile Eemian using inverse modeling of biomes and δ13C. Quaternary Science Reviews 25, 28062819.CrossRefGoogle Scholar
Sánchez Goñi, M.F., Bakker, P., Desprat, S., Carlson, A.E., Van Meerbeeck, C.J., Peyron, O., Naughton, F., et al. , 2012. European climate optimum and enhanced Greenland melt during the Last Interglacial. Geology 40, 627630.CrossRefGoogle Scholar
Sánchez Goñi, M.F., Loutre, M.F., Crucifix, M., Peyron, O., Santos, L., Duprat, J., Malaizé, B., Turon, J.-L., Peypouquet, J.-P., 2005. Increasing vegetation and climate gradient in Western Europe over the Last Glacial Inception (122–110 ka): data-model comparison. Earth and Planetary Science Letters 231, 111130.CrossRefGoogle Scholar
Shakun, J.D., Lea, D.W., Lisiecki, L.E., Raymo, M.E., 2015. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth and Planetary Science Letters 426, 5868.CrossRefGoogle Scholar
Sier, M.J., Parés, J.M., Antoine, P., Locht, J.-L., Dekkers, M.J., Limondin-Lozouet, N., Roebroeks, W., 2015. Evidence for the Blake Event recorded at the Eemian archaeological site of Caours, France. Quaternary International 357, 149157.CrossRefGoogle Scholar
Tzedakis, P.C., Raynaud, D., McManus, J.F., Berger, A., Brovkin, V., Kiefer, T., 2009. Interglacial diversity. Nature Geoscience 2, 751755.CrossRefGoogle Scholar
Woillard, G., 1978. Grande Pile peat bog: a continuous pollen record for the last 140,000 years. Quaternary Research 9, 121.CrossRefGoogle Scholar