Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-s7xmh Total loading time: 0.281 Render date: 2022-01-24T08:38:12.925Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Paleowetlands and regional climate change in the central Atacama Desert, northern chile

Published online by Cambridge University Press:  20 January 2017

Jay Quade*
Affiliation:
The Desert Laboratory and Department of Geosciences, University of Arizona, Tucson, Arizona 85745, USA
Jason A. Rech
Affiliation:
Department of Geology, Miami University, Oxford, Ohio 45056, USA
Julio L. Betancourt
Affiliation:
U.S. Geological Survey, 1675 West Anklam Road, Tucson, AZ 85745, USA
Claudio Latorre
Affiliation:
CASEB-Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, 114-D Chile Institute of Ecology and Biodiversity (IEB), Casilla 653, Santiago, Chile
Barbra Quade
Affiliation:
612 East First Street, Tucson, Arizona 85705, USA
Kate Aasen Rylander
Affiliation:
U.S. Geological Survey, 1675 West Anklam Road, Tucson, AZ 85745, USA
Timothy Fisher
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA
*
*Corresponding author. Fax: +1 520 621 2679.E-mail address: quadej@email.arizona.edu (J. Quade).

Abstract

Widespread, organic-rich diatomaceous deposits are evidence for formerly wetter times along the margins of the central Atacama Desert, one of the driest places on Earth today. We mapped and dated these paleowetland deposits at three presently waterless locations near Salar de Punta Negra (24.5°S) on the western slope of the Andes. Elevated groundwater levels supported phreatic discharge into wetlands during two periods: 15,900 to ~ 13,800 and 12,700 to ~ 9700 cal yr BP. Dense concentrations of lithic artifacts testify to the presence of paleoindians around the wetlands late in the second wet phase (11,000?–9700 cal yr BP). Water tables dropped below the surface before 15,900 and since 8100 cal yr BP, and briefly between ~ 13,800 and 12,700 cal yr BP. This temporal pattern is repeated, with some slight differences, in rodent middens from the study area, in both paleowetland and rodent midden deposits north and south of the study area, and in lake level fluctuations on the adjacent Bolivian Altiplano. The regional synchroneity of these changes points to a strengthening of the South American Monsoon — which we term the "Central Andean Pluvial Event" — in two distinct intervals (15,900–13,800 and 12,700–9700 cal yr BP), probably induced by steepened SST gradients across the tropical Pacific (i.e., La Niña-like conditions).

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., Veliz, C., (2001a). Tropical climate change at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, 698701.CrossRefGoogle Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., Broda, J.P., (2001b). The history of South American tropical precipitation for the past 25,000 years. Science 291, 640643.CrossRefGoogle Scholar
Berger, A., Loutre, M.F., (1991). Insolation values for the climate of the last 10 million years. Quaternary Sciences Review 10, 4, 297317.CrossRefGoogle Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Rylander, K.A., Quade, J., (2000). A 22,000-year record of monsoonal precipitation from northern Chile's Atacama Desert. Science 289, 15421546.CrossRefGoogle ScholarPubMed
Bird, J., (1938). Antiquity and migrations of the early inhabitants of Patagonia. The Geographical Review 28, 250275.CrossRefGoogle Scholar
Bobst, A.L., Lowenstein, T.K., Jordan, T.E., Godfrey, L.V., Ku, T.-L., Luo, S., (2001). A 106 ka paleoclimate record from drill core of Salar de Atacama, northern Chile. Palaeogeography, Palaeoclimatology, and Palaeoecology 173, 2142.CrossRefGoogle Scholar
Broccoli, A.J., Dahl, K.A., Stouffer, R.J., (2006). Response of the ITCZ to northern Hemispheric cooling. Geophysical Research Letters 33, L01702 .CrossRefGoogle Scholar
Cane, M.A., (2005). The evolution of El Niño, past and future. Earth and Planetary Science Letters 230, 3–4, 227240.CrossRefGoogle Scholar
Clement, A.C., Seager, R., Cane, M.A., (1999). Orbital controls on the El Niño/Southern Oscillation and the tropical climate. Paleoceanography 14, 4, 441456.CrossRefGoogle Scholar
Clement, A.C., Hall, A., Broccoli, A.J., (2004). The importance of precessional signals in the tropical climate. Climate Dynamics 22, 327341.CrossRefGoogle Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W., Vuille, M., Cardoso, A.O., Ferrari, J.A., Silva Dias, P.L., Viana, O., (2005). Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 6366.CrossRefGoogle ScholarPubMed
Denton, G.H., Broecker, W.S., Alley, R.B., (2006). The Mystery Interval 17.5 to 14.5 kyrs ago. PAGES News 14, 20, 1416.CrossRefGoogle Scholar
Dong, B.-W., Sutton, R.T., (2007). Enhancement of El Niño-Southern Oscillation (ENSO) variability by a weakened Atlantic thermohaline circulation in a coupled GCM. Journal of Climate 20, 49204939.CrossRefGoogle Scholar
Dong, B.-W., Sutton, R.T., Scaife, A.A., (2006). Multidecadal modulation of El Niño-Southern Oscillation (ENSO) variance by Atlantic Ocean sea-surface temperatures. Geophysical Research Letters 33, L08705 .CrossRefGoogle Scholar
Fritz, P., Suzuki, O., Silva, C., Salati, E., (1981). Isotope hydrology of groundwater in the Pampa del Tamarugal, Chile. Journal of Hydrology 53, 161184.CrossRefGoogle Scholar
Garreaud, R.D., (1999). Multiscale analysis of the summertime precipitation over the central Andes. Monthly Weather Review 127, 901921.2.0.CO;2>CrossRefGoogle Scholar
Garreaud, R.D., Vuille, M., Clement, A.C., (2003). The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 1, 522.CrossRefGoogle Scholar
Geyh, M.A., Grosjean, M., Núñez, L., Schotterer, U., (1999). Radiocarbon reservoir effect and the timing of the late-glacial/early Holocene humid phase in the Atacama Desert (northern Chile). Quaternary Research 52, 143153.CrossRefGoogle Scholar
Grosjean, M., (1994). Paleohydrology of the Laguna Lejía (north Chilean Altiplano) and climatic implications for late-glacial times. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 89100.CrossRefGoogle Scholar
Grosjean, M., van Leeuwen, J.F.N., van der Knaap, W.O., Geyh, M.A., Amman, B., Tanner, W., Messerli, B., Núñez, L.A., Valero-Garces, B.L., Veit, H., (2001). A 22,000 14C year BP sediment and pollen record of climate change from Laguna Miscanti (23°S), northern Chile. Global and Planetary Change 28, 3551.CrossRefGoogle Scholar
Grosjean, M., Cartajena, I., Geyh, M.A., Núñez, L., (2003). From proxy data to paleoclimate interpretation: the mid-Holocene paradox of the Atacama Desert, northern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 1–3, 247258.CrossRefGoogle Scholar
Grosjean, M., Núñez, L., Cartajena, I., (2005). Palaeoindian occupation of the Atacama Desert, northern Chile. Journal of Quaternary Science 20, 7–8, 643653.CrossRefGoogle Scholar
Hughen, K.A., Eglington, T.I., Xu, L., Makou, M., (2004). Abrupt tropical vegetation response to rapid climate changes. Science 304, 19551959.CrossRefGoogle ScholarPubMed
Lamy, F., Hebbeln, D., Wefer, G., (1998). Late Quaternary precessional cycles of terrigenous sediment input off the Norte Chico, Chile (27.5°S) and paleolimatic implications. Palaeogeography, Palaeoclimatology, and Palaeoecology 141, 233251.CrossRefGoogle Scholar
Latorre, C., Betancourt, J.L., Rylander, K.A., Quade, J., (2002). Vegetation invasions into the absolute desert: a 45 000 yr rodent midden record from the Calama–Salar de Atacama basins, northern Chile (lat 22°–24°S). Geological Society of America Bulletin 114, 3, 349366.2.0.CO;2>CrossRefGoogle Scholar
Latorre, C., Betancourt, J.L., Rylander, K.A., Quade, J., Matthei, O., (2003). A 13.5-kyr vegetation history from the arid prepuna of northern Chile (22–23°S). Palaeogeography, Palaeoclimatology, Palaeoecology 194, 223246.CrossRefGoogle Scholar
Latorre, C., Betancourt, J.L., Rech, J.A., Quade, J., Holmgren, C., Placzek, C., Maldonado, A.J.C., Vuiile, M., Rylander, K., (2005). Late Quaternary history of the Atacama Desert. Smith, M., Hesse, P., 23°S: the Archeology and Environmental History of the Southern Deserts. National Museum of Australia Press, Canberra, Australia., 7390.Google Scholar
Latorre, C., Betancourt, J.L., Arroyo, M.T.K., (2006). Late Quaternary vegetation and climate history of a perennial river canyon in the Rio Salado basin (22°S) of northern Chile. Quaternary Research 65, 450466.CrossRefGoogle Scholar
Lea, D.W., Pak, D.K., Peterson, L.C., Hughen, K.A., (2003). Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial maximum. Science 301, 13611364.CrossRefGoogle Scholar
Lenters, J.D., Cook, K.H., (1997). On the origin of the Bolivian High and related circulation features of the South American climate. Journal of Atmospheric Science 54, 656677.2.0.CO;2>CrossRefGoogle Scholar
Lynch, T.F., (1986). Climate change and human settlement around the late-glacial Laguna de Punta Negra, northern Chile: the preliminary results. Geoarcheology 1, 2, 145162.CrossRefGoogle Scholar
Lynch, T.F., (1990). Quaternary climate, environment, and human occupation of the south-central Andes. Geoarcheology 5, 3, 199228.CrossRefGoogle Scholar
Lynch, T.F., (1999). The earliest South American lifeways. Salomon, F., Schwartz, S.B., Cambridge History of the Native Peoples of the Americas. Part 1: South America Cambridge University Press, Cambridge, UK., 188263.Google Scholar
Kull, C., Grosjean, M., Veit, H., (2002). Modeling modern and late Pleistocene glacio-climatological conditions in the north Chilean Andes (29°S–30°S). Climate Change 53, 3, 359381.CrossRefGoogle Scholar
Maldonado, A., Betancourt, J.L., Latorre, C., Villagran, C., (2005). Pollen analyses from a 50,000-yr rodent midden series in the southern Atacama Desert (25°30′S). Journal of Quaternary Science 20, 493507.CrossRefGoogle Scholar
Margaritz, M., Aravena, R., Pena, H., Suzuki, O., Grilli, A., (1989). Water chemistry and isotope study of streams and springs in northern Chile. Journal of Hydrology 108, 323341.CrossRefGoogle Scholar
Martin, L., Betaux, J., Corrège, T., Ledru, M.-P., Mourguiart, P., Siffedine, A., Soubiès, F., Wirrman, D., Sugio, K., Turcq, B., (1997). Astronomical forcing of contrasting rainfall changes in tropical South America between 12,400 and 8800 cal yr B.P. Quaternary Research 47, 117122.CrossRefGoogle Scholar
Nester, P.L., Gayo, E., Latorre, C., Jordan, T.E., Blanco, N., (2007). Perennial stream discharge in the hyperarid Atacama Desert of northern Chile during the latest Pleistocene. Proceedings of the National Academy of Science 104, 50, 1972419729.CrossRefGoogle ScholarPubMed
Núñez, L.A., (1983). Paleoindian and archaic cultural periods in the arid and semiarid regions of northern Chile. Advances in World Archeology 2 Academic Press, 161203.Google Scholar
Núñez, L.A., Grosjean, M., Cartajena, I., (2002). Human occupations and climate change in the Puna de Atacama. Science 298, 821824.CrossRefGoogle ScholarPubMed
Palmer, M.R., Pearson, P.N., (2003). A 23,000-year record of surface water pH and pCO2 in the Western Equatorial Pacific Ocean. Science 300, 480482.CrossRefGoogle ScholarPubMed
Pigati, J.S., Quade, J., Shanahan, T.M., Haynes, C.V. Jr., (2004). Radiocarbon dating of minute gastropods and new constraints on the timing of late Quaternary spring-discharge deposits in southern Arizona, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 116, 15291544.Google Scholar
Placzek, C., Quade, J., Patchett, P.J., (2006). Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: implications for causes of tropical climate change. Geological Society of America Bulletin 118, 515532.CrossRefGoogle Scholar
Quade, J., Mifflin, M.D., Pratt, W.L., McCoy, W., Burckle, L., (1995). Fossil spring deposits in the southern Great Basin and their implications for changes in water-table levels near Yucca Mountain, Nevada during Quaternary time. Geological Society of America Bulletin 107, 213230.2.3.CO;2>CrossRefGoogle Scholar
Quade, J., Forester, R.M., Pratt, W.L., Carter, C., (1998). Black mats, spring-fed streams, and late-glacial-age recharge in the southern Great Basin. Quaternary Research 49, 129148.CrossRefGoogle Scholar
Rech, J., Quade, J., Betancourt, J., (2002). Late Quaternary paleohydrology of the central Atacama Desert (22–24°S), Chile. Geological Society of America Bulletin 114, 334348.2.0.CO;2>CrossRefGoogle Scholar
Rech, J., Pigati, J., Quade, J., Betancourt, J.L., (2003). Re-evaluation of mid-Holocene deposits at Quebrada Puripica, northern Chile. Palaeoecology, Palaeogeography, Palaeoclimatology 194, 207222.CrossRefGoogle Scholar
Stott, L., Poulsen, C., Lund, S., Thunell, R., (2002). Super ENSO and global climate oscillations at millennial timescales. Science 297, 222226.CrossRefGoogle Scholar
Stuiver, M., Reimer, R.W., (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Reimer, P.J., CALIB 5.02 (online at http://calib.qub.ac.uk/calib/calib.html).Google Scholar
Sylvestre, F., Servant, M., Servant-Vildary, S., Causse, C., Fournier, M., Ybert, J.P., (1999). Lake-level chronology on the southern Bolivian Altiplano (18–23°S) during late-Glacial time and the early Holocene. Quaternary Research 51, 281300.CrossRefGoogle Scholar
Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Sowers, T.A., Henderson, K.A., Zagorodnov, V.S., Lin, P.-N., Mikhalenko, V.N., Campen, R.K., Bolzan, J.F., Cole-Dai, J., Francou, B., (1998). A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 18581864.CrossRefGoogle ScholarPubMed
Thompson, L.G., Mosley-Thompson, E., Henderson, K.A., (2000). Ice-core palaeoclimate records in tropical South America since the last glacial maximum. Journal of Quaternary Science 15, 4, 377394.3.0.CO;2-L>CrossRefGoogle Scholar
Timmermann, A., Okumura, Y., An, S.-I., Clement, A., Dong, B., Guilyardi, E., Hu, A., Jungclaus, J., Krebs, U., Renold, M., Stocker, T.F., Stouffer, R.J., Sutton, R., Xie, S.-P., Yin, J., (2007). The influence of shutdown of the Atlantic meridional overturning circulation on ENSO. Journal of Climate 20, 48994919.CrossRefGoogle Scholar
Vuille, M., (1999). Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. International Journal of Climatolology 19, 15791600.3.0.CO;2-N>CrossRefGoogle Scholar
Vuille, M., Keimig, F., (2004). Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. Journal of Climatology 17, 33343348.2.0.CO;2>CrossRefGoogle Scholar
Vuille, M., Bradley, R.S., Werner, M., Healy, R., Keimig, F., (2003). Modeling δ 18O in precipitation over the tropical Americas: 1. Interannual variability and climate controls. Journal of Geophysical Research Letters 108, D6, 4147 .Google Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Cristalli, P.S., Smart, P.L., Richards, D.A., Shen, C.-C., (2004). Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, 740743.CrossRefGoogle ScholarPubMed
Wu, S.K., (1993). Notes on the Succineid land snails of New Mexico. Malacological Review 26, 9194.Google Scholar
128
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Paleowetlands and regional climate change in the central Atacama Desert, northern chile
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Paleowetlands and regional climate change in the central Atacama Desert, northern chile
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Paleowetlands and regional climate change in the central Atacama Desert, northern chile
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *