Hostname: page-component-6b989bf9dc-pkhfk Total loading time: 0 Render date: 2024-04-14T13:16:49.668Z Has data issue: false hasContentIssue false

Palynological evidence of sea-surface conditions in the Barents Sea off northeast Svalbard during the postglacial period

Published online by Cambridge University Press:  08 April 2020

Camille Brice
Affiliation:
GEOTOP, Université du Québec à Montréal, CP 8888, Montréa, QC H3C3P8 Canada
Anne de Vernal*
Affiliation:
GEOTOP, Université du Québec à Montréal, CP 8888, Montréa, QC H3C3P8 Canada
Elena Ivanova
Affiliation:
Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997 Moscow, Russia
Simon van Bellen
Affiliation:
GEOTOP, Université du Québec à Montréal, CP 8888, Montréa, QC H3C3P8 Canada
Nicolas Van Nieuwenhove
Affiliation:
GEOTOP, Université du Québec à Montréal, CP 8888, Montréa, QC H3C3P8 Canada Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997 Moscow, Russia University of New Brunswick, 2 Bailey Drive, Fredericton, NB E3B5A3, Canada
*
*Corresponding author email : devernal.anne@uqam.ca

Abstract

Postglacial changes in sea-surface conditions, including sea-ice cover, summer temperature, salinity, and productivity were reconstructed from the analyses of dinocyst assemblages in core S2528 collected in the northwestern Barents Sea. The results show glaciomarine-type conditions until about 11,300 ± 300 cal yr BP and limited influence of Atlantic water at the surface into the Barents Sea possibly due to the proximity of the Svalbard-Barents Sea ice sheet. This was followed by a transitional period generally characterized by cold conditions with dense sea-ice cover and low-salinity pulses likely related to episodic freshwater or meltwater discharge, which lasted until 8700 ± 700 cal yr BP. The onset of “interglacial” conditions in surface waters was marked by a major change in dinocyst assemblages, from dominant heterotrophic to dominant phototrophic taxa. Until 4100 ± 150 cal yr BP, however, sea-surface conditions remained cold, while sea-surface salinity and sea-ice cover recorded large amplitude variations. By ~4000 cal yr BP optimum sea-surface temperature of up to 4°C in summer and maximum salinity of ~34 psu suggest enhanced influence of Atlantic water, and productivity reached up to 150 gC/m2/yr. After 2200 ± 1300 cal yr BP, a distinct cooling trend accompanied by sea-ice spreading characterized surface waters. Hence, during the Holocene, with exception of an interval spanning about 4000 to 2000 cal yr BP, the northern Barents Sea experienced harsh environments, relatively low productivity, and unstable conditions probably unsuitable for human settlements.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albrethsen, S.E., Arlov, T.B., 1988. The discovery of Svalbard—A problem reconsidered. Fennoscandia Archaeologica 5, 105110.Google Scholar
Andersen, C., Koç, N., Jennings, A., Andrews, J.T., 2004. Non-uniform response of the major surface currents in the Nordic Seas to insolation forcing: Implications for the Holocene climate variability. Paleoceanography 19, PA2003. http://dx.doi.org/10.1029/2002PA000873.CrossRefGoogle Scholar
Arlov, T.B., 2005. The discovery and early exploitation of Svalbard: Some historiographical notes. Acta Borealia 22, 319.CrossRefGoogle Scholar
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., Ingvaldsen, R.B., 2012. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. Journal of Climate 25, 47364743.CrossRefGoogle Scholar
Årthun, M., Schrum, C., 2010. Ocean surface heat flux variability in the Barents Sea. Journal Marine Systems 83: 8898.CrossRefGoogle Scholar
Bartels, M., Titschack, J., Fahl, K., Stein, R., Hebbeln, D., 2018. Wahlenbergfjord, eastern Svalbard: A glacier-surrounded fjord reflecting regional hydrographic variability during the Holocene? Boreas 47, 10031021CrossRefGoogle Scholar
Bartels, M., Titschack, J., Fahl, K., Stein, R., Seidenkrantz, M-S., Hillaire-Marcel, C., Hebbeln, D., 2017. Atlantic water advection vs. glacier dynamics in northern Spitsbergen since early deglaciation. Climate of the Past 13, 17171749.CrossRefGoogle Scholar
Bauch, H.A., Erlenkeuser, H., Spielhagen, R.F., Struck, U., Matthiessen, J., Thiede, J., Heinemeier, J., 2001. A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30,000 yr. Quaternary Science Reviews 20, 659678.CrossRefGoogle Scholar
Baumann, K.-H., Matthiessen, J., 1992. Variations in surface water mass conditions in the Norwegian Sea: evidence from Holocene coccolith and dinoflagellate cyst assemblages. Marine Micropaleontology 20, 129146.CrossRefGoogle Scholar
Bjerk, H.B., 2000. Stone Age settlement on Svalbard? A re-evaluation of previous finds and the results of a recent field survey. Polar Record 36, 97112.CrossRefGoogle Scholar
Blaauw, M., 2010. “Methods and code for ’classical’ age-modelling of radiocarbon sequences.” Quaternary Geochronology 5, 512518.CrossRefGoogle Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Bonnet, S., de Vernal, A., Hillaire-Marcel, C., Radi, T., Husum, K., 2010. Variability of sea-surface temperature and sea-ice cover in the Fram Strait over the last two millennia. Marine Micropaleontology 74, 5974.CrossRefGoogle Scholar
Christiansson, H., Simonsen, P., 1970. Stone Age finds from Spitsbergen. Acta Borealia, B. Humaniora 11, 524.Google Scholar
Dale, B., 2001. The sedimentary record of dinoflagellate cysts: Looking back into the future of phytoplankton blooms. Scientia Marina 65, 257272.CrossRefGoogle Scholar
de Vernal, A., Bilodeau, G., Henry, M., 2010. Micropaleontological Preparation Techniques and Analyses. Cahier du Geotop n° 3, Geotop, Montréal.Google Scholar
de Vernal, A., Henry, M., Matthiessen, J., Mudie, P.J., Rochon, A., Boessenkool, K.P., Eynaud, F. et al. , 2001. Dinoflagellate cyst assemblages as tracers of sea-surface conditions in the northern North Atlantic, Arctic and sub-Arctic seas: The new ‘n= 677’data base and its application for quantitative palaeoceanographic reconstruction. Journal of Quaternary Science 16, 681698.CrossRefGoogle Scholar
de Vernal, A., Hillaire-Marcel, C., Darby, D.A., 2005. Variability of sea ice cover in the Chukchi Sea (western Arctic Ocean) during the Holocene. Paleoceanography 20, PA4018. http://dx.doi.org/10.1029/2005PA001157.CrossRefGoogle Scholar
de Vernal, A., Hillaire-Marcel, C., Rochon, A., Fréchette, B., Henry, M., Solignac, S., Bonnet, S., 2013b. Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quaternary Science Reviews 79, 111121.CrossRefGoogle Scholar
de Vernal, A., Marret, F., 2007. Organic-walled dinoflagellate cysts: Tracers of sea-surface conditions. Proxies in Late Cenozoic Paleoceanography 1, 371408.CrossRefGoogle Scholar
de Vernal, A., Radi, T., Zaragosi, S., Van Nieuwenhove, N., Rochon, A., Allan, E., De Schepper, S., et al. , 2020. Distribution of common modern dinoflagellate cyst taxa in surface sediments of the Northern Hemisphere in relation to environmental parameters: The new n = 1968 database. Marine Micropaleontology in press.CrossRefGoogle Scholar
de Vernal, A., Rochon, A., Fréchette, B., Henry, M., Radi, T., Solignac, S., 2013a. Reconstructing past sea ice cover of the Northern hemisphere from dinocyst assemblages: status of the approach. Quaternary Science Reviews 79, 122134.CrossRefGoogle Scholar
Dieckmann, G.S., Hellmer, H.H., 2008. The importance of sea ice: An overview. In: Thomas, D.N., Dieckmann, G.S (Eds.), Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology. Blackwell Science, Oxford. http://dx.doi.org/10.1002/9780470757161.ch1.Google Scholar
Duplessy, J.C., Ivanova, E., Murdmaa, I., Paterne, M., Labeyrie, L., 2001. Holocene paleoceanography of the northern Barents Sea and variations of the northward heat transport by the Atlantic Ocean. Boreas 30, 216.CrossRefGoogle Scholar
Dyke, A.S., Moore, A., Robertson, L., 2003. Deglaciation of North America. Geological Survey of Canada, Open File 1574. https://doi.org/10.4095/214399CrossRefGoogle Scholar
Ebbesen, H., Hald, M., Eplet, T.H., 2007. Late glacial and early Holocene climatic oscillations on the western Svalbard margin, European Arctic. Quaternary Science Review 26, 19992011.CrossRefGoogle Scholar
Elverhøi, A., Fjeldskaar, W., Solheim, A., Nyland-Berg, M., Russwurm, L., 1993. The Barents Sea Ice Sheet—A model of its growth and decay during the last ice maximum. Quaternary Science Reviews 12, 863873.CrossRefGoogle Scholar
Falardeau, J., de Vernal, A., Spielhagen, R., 2018. Paleoceanography of northeastern Fram Strait since the last glacial maximum: palynological evidence of large amplitude change. Quaternary Science Reviews, 195: 133152.CrossRefGoogle Scholar
Gammelsrød, T., Leikvin, Ø., Lien, V., Budgell, W.P., Loeng, H., Maslowski, W., 2009. Mass and heat transports in the NE Barents Sea: observations and models. Journal of Marine Systems 75: 5669.CrossRefGoogle Scholar
Gibb, O. T., Steinhauer, S., Fréchette, B., de Vernal, A., Hillaire-Marcel, C., 2015. Diachronous evolution of sea surface conditions in the Labrador Sea and Baffin Bay since the last deglaciation. The Holocene 25, 18821897.CrossRefGoogle Scholar
Guiot, J., de Vernal, A., 2007. Transfer functions: Methods for quantitative paleoceanography based on microfossils. Developments in Marine Geology 1, 523563.CrossRefGoogle Scholar
Guiot, J., de Vernal, A., 2011. Is spatial autocorrelation introducing biases in the apparent accuracy of paleoclimatic reconstructions? Quaternary Science Reviews 30, 19651972.CrossRefGoogle Scholar
Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitgaard-Kristensen, D., Risebrobakken, B., Salomonsen, G.R., Sarnthein, M., Sejrup, H.P., Telford, R.J., 2007. Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene. Quaternary Science Reviews 26, 34233440.CrossRefGoogle Scholar
Hald, M., Andersson, C., Ebbesen, H., Jansen, E., Klitgaard-Kristensen, D., Risebrobakken, B., Salomonsen, G.R., Sarnthein, M., Sejrup, H.P., Telford, R.J., 2007. Variations in temperature and extent of Atlantic water in the northern North Atlantic during the Holocene. Quaternary Science Reviews 26, 34233440.CrossRefGoogle Scholar
Hald, M., Aspeli, R., 1997. Rapid climatic shifts on the northern Norwegian Sea during the last deglaciation and the Holocene. Boreas 26, 1528.CrossRefGoogle Scholar
Hald, M., Danielsen, T.K., Lorentzen, S., 1989. Late Pleistocene-Holocene benthic foraminiferal distribution in the southwestern Barents Sea: Paleoenvironmental implications. Boreas 18, 368388.Google Scholar
Hald, M., Ebbesen, H., Forwick, M., Godtliebsen, F., Khomenko, L., Korsun, S., Ringstad Olsen, L., Vorren, T.O., 2004. Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin. Quaternary Science Reviews 23, 20752088.CrossRefGoogle Scholar
Harland, R., Nordberg, K., Filipsson, H.L., 2004. A high-resolution dinoflagellate cyst record from latest Holocene sediments in Koljö Fjord, Sweden. Review of Palaeobotany and Palynology 128, 119141.CrossRefGoogle Scholar
Head, M.J., 1996. Modern dinoflagellate cysts and their biological affinities. In: Jansonius, J., McGregor, D.C. (Eds.), Palynology: Principles and Applications. Vol. 3. American Association of Stratigraphic Palynologists Foundation, Dallas, pp. 11971248.Google Scholar
Heikkilä, M., Pospelova, V., Forest, A., Stern, G.A., Fortier, L., Macdonald, R.W., 2016. Dinoflagellate cyst production over an annual cycle in seasonally ice-covered Hudson Bay. Marine Micropaleontology 125, 124.CrossRefGoogle Scholar
Heikkilä, M., Pospelova, V., Hochheim, K.P., Kuzyk, Z.Z.A., Stern, G.A., Barber, D.G., Macdonald, R.W., 2014. Surface sediment dinoflagellate cysts from the Hudson Bay system and their relation to freshwater and nutrient cycling. Marine Micropaleontology 106, 79109.CrossRefGoogle Scholar
Helland-Hansen, B., Nansen, F., 1909. The Norwegian Sea. Fiskerhdirektoratets Skrifter Series Hauunders 2, 1360.Google Scholar
Hogan, K.A., Dowdeswell, J.A., Hillenbrand, C.-D., Ehrmann, W., Noormets, R., Wacker, L., 2017. Subglacial sediment pathways and deglacial chronology of the northern Barents Sea Ice Sheet. Boreas 46, 750771.CrossRefGoogle Scholar
Hohmann, S., Kucera, M., de Vernal, A., 2020. Identifying the signature of sea-surface properties in dinocyst assemblages: Implications for quantitative palaeoceanographical reconstructions by transfer functions and analogue techniques. Marine Micropaleontology in press.CrossRefGoogle Scholar
Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I., 2016. The last Eurasian ice sheets—A chronological database and time-slice reconstruction Boreas 45, 145.CrossRefGoogle Scholar
Ivanova, E., Murdmaa, I., de Vernal, A., Risebrobakken, B., Peyve, A., Brice, C., Seitkalieva, E., Pisarev, S., 2019. Postglacial variations in Atlantic Water inflow, iceberg calving and sea ice conditions in the northwestern Barents Sea. Quaternary Research 120. https://doi.org/10.1017/qua.2019.18Google Scholar
Jansen, E., Andersson, C., Moros, M., Nisancioglu, K.H., Nyland, B.F., Telford, R.J., 2009. The early to mid-Holocene thermal optimum in the North Atlantic. In: Natural Climate Variability and Global Warming: A Holocene Perspective. Battarbee, R.W. and Binney, H. A, Eds. Blackwell Publishing Ltd, pp. 123137.Google Scholar
Jennings, A.E., Knudsen, K.L., Hald, M., Hansen, C.V., Andrews, J.T., 2002. A mid-Holocene shift in Arctic sea-ice variability on the East Greenland Shelf. The Holocene 12, 4958.CrossRefGoogle Scholar
Jeong, H.J., Yoo, Y.D., Kim, J.S., Seong, K.A., Kang, N.S., Kim, T.H., 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Science Journal 45, 6591.CrossRefGoogle Scholar
Kaufman, D.S., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P. J., Brubaker, L.B. et al. , 2004. Holocene thermal maximum in the western Arctic (0–180 W). Quaternary Science Reviews 23, 529560.CrossRefGoogle Scholar
Kleiber, H.P., Knies, J., Niessen, F., 2000. The Late Weichselian glaciation of the Franz Victoria Trough, northern Barents Sea: Ice sheet extent and timing. Marine Geology 168, 2544.CrossRefGoogle Scholar
Klitgaard Kristensen, D.K., Rasmussen, T.L., Koç, N., 2013. Palaeoceanographic changes in the northern Barents Sea during the last 16 000 years—New constraints on the last deglaciation of the Svalbard-Barents Sea Ice Sheet. Boreas 42, 798813.CrossRefGoogle Scholar
Knies, J., Vogt, C., Stein, R., 1998. Late Quaternary growth and decay of the Svalbard/Barents Sea ice sheet and paleoceanographic evolution in the adjacent Arctic Ocean. Geo-Marine Letters 18, 195202.CrossRefGoogle Scholar
Koç, N., Jansen, E., Haidason, H., 1993. Paleoceanographic reconstructions of surface ocean conditions in the Greenland, Iceland and Norwegian seas through the last 14 ka based on diatoms. Quaternary Science Reviews 12, 115140.CrossRefGoogle Scholar
Koç, N., Klitgaard-Kristensen, D., Hasle, K., Forsberg, C.F., Solheim, A., 2002. Late glacial palaeoceanography of Hinlopen Strait, northern Svalbard. Polar Research 21, 307314.CrossRefGoogle Scholar
Landvik, J.Y., Bondevik, S., Elverhøi, A., Fjeldskaar, W., Mangerud, J.A.N., Salvigsen, , Siegert, M.J. et al. , 1998. The last glacial maximum of Svalbard and the Barents Sea area: Ice sheet extent and configuration. Quaternary Science Reviews 17, 4375.CrossRefGoogle Scholar
Larsen, N.K., Kjær, K.H., Lecavalier, B., Bjørk, A.A., Colding, S., Huybrechts, P., Jakobsen, K.E., et al. , 2015., The response of the southern Greenland ice sheet to the Holocene thermal maximum. Geology 43, 291294.CrossRefGoogle Scholar
Leduc, G., Schneider, R., Kim, J.-H., Lohmann, G., 2010. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quaternary Science Reviews 29, 9891004.CrossRefGoogle Scholar
Lind, S., Ingvaldsen, R., 2012. Variability and impacts of Atlantic Water entering the Barents Sea from the north. Deep Sea Research Part I 62, 7088.CrossRefGoogle Scholar
Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K., Zweng, M.M., et al. , 2013. In: Levitus, S., Mishonov, A. (Eds.), World Ocean Atlas 2013. Volume 1: Temperature. S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 73, 40 pp.Google Scholar
Loeng, H., 1991. Features of the physical oceanographic conditions of the Barents Sea. Polar Research 10, 518.CrossRefGoogle Scholar
Lubinski, D.J., Korsun, S., Polyak, L., Forman, S.L., Lehman, S.J., Herlihy, F.A., Miller, G.H., 1996. The last deglaciation of the Franz Victoria Trough, northern Barents Sea. Boreas 25, 89100.CrossRefGoogle Scholar
Lubinski, D.J., Polyak, L., Forman, S.L., 2001. Freshwater and Atlantic water inflows to the deep northern Barents and Kara seas since ca 13 14C ka: Foraminifera and stable isotopes. Quaternary Science Reviews 20, 18511879.CrossRefGoogle Scholar
Mangerud, J., Bolstad, M., Elgersma, A., Helliksen, D., Landvik, J.Y., Lønne, I., Lycke, A.K., Salvigsen, O., Sandahl, T., Svendsen, J.I., 1992. The last glacial maximum on western Svalbard. Quaternary Research 38, 131.CrossRefGoogle Scholar
Mangerud, J., Bondevik, S., Gulliksen, S., Hufthammer, A.K., Høisæter, T., 2006. Marine 14 C reservoir ages for 19th century whales and molluscs from the North Atlantic. Quaternary Science Reviews 25, 32283245.CrossRefGoogle Scholar
Matthiessen, J., de Vernal, A., Head, M., Okolodkov, Y., Zonneveld, K., Harland, R., 2005. Modern organic-walled dinoflagellate cysts in Arctic marine environments and their (paleo-) environmental significance. Paläontologische Zeitschrift 79/1, 351.CrossRefGoogle Scholar
McAndrews, J.H., Berti, A.A., Norris, G., 1973. Key to the Quaternary Pollen and Spores of the Great Lakes Region. Royal Ontario Museum Life Sciences Miscellaneous Publication. University of Toronto Press, Toronto.CrossRefGoogle Scholar
Mertens, K.N., Verhoeven, K., Verleye, T., Louwye, S., Amorim, A., Ribeiro, S., Deaf, A.S. et al. , 2009. Determining the absolute abundance of dinoflagellate cysts in recent marine sediments: The Lycopodium marker-grain method put to the test. Review of Palaeobotany and Palynology 157, 238252.CrossRefGoogle Scholar
Müller, J., Werner, K., Stein, R., Fahl, K., Moros, M., Jansen, E., 2012. Holocene cooling culminates in sea ice oscillations in Fram Strait. Quaternary Science Reviews 47, 114.CrossRefGoogle Scholar
Murdmaa, I., Ivanova, E., 2017. Deglaciation of the Late Weichselian Barents Sea ice sheet. In: Boone, M. (Ed.), Deglaciation Processes, Causes and Consequences. Nova Science Publishers, Hauppauge NY, pp. 141171.Google Scholar
Peltier, W.R., Fairbank, R.G., 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 33223337.CrossRefGoogle Scholar
Pfirman, S.L., Bauch, D., Gammelsrød, T., 1994. The northern Barents Sea: water mass distribution and modification. In: Johannessen, O.M., Muench, R.D., Overland, J.E. (Eds.), The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume. Geophysical Monograph Series, Vol. 85. American Geophysical Union, Washington, DC, pp. 7794.Google Scholar
Polyak, L., Mikhailov, V., 1996. Post-glacial environments of the southeastern Barents Sea: foraminiferal evidence. In: Andrews, J.T., Austin, W.E.N., Bergsten, H., Jennings, A.E. (Eds.), Late Quaternary Paleoceanography of the North Atlantic Margins. Geological Society, London, Special Publication No. 111., pp. 323337.Google Scholar
Potvin, E., Rochon, A., Lovejoy, C., 2013. Cyst–theca relationship of the arctic dinoflagellate cyst Islandinium minutum (Dinophyceae) and phylogenetic position based on SSU rDNA and LSU rDNA. Journal of Phycology 49, 848866.CrossRefGoogle ScholarPubMed
Radi, T., Bonnet, S., Cormier, M.-A., de Vernal, A., Durantou, L., Faubert, E., Head, M.J., Henry, M., Pospelova, V., Rochon, A., and Van Nieuwenhove, N., 2013. Operational taxonomy and (paleo-)autecology of round, brown, spiny dinoflagellate cysts from the Quaternary of high northern latitudes. Marine Micropaleontology 98, 4157.CrossRefGoogle Scholar
Radi, T., de Vernal, A., 2008. Dinocysts as proxy of primary productivity in mid–high latitudes of the Northern Hemisphere. Marine Micropaleontology 68, 84114.CrossRefGoogle Scholar
Raghavan, M., DeGiorgio, M., Albrechtsen, A., Moltke, I., Skoglund, P., Korneliussen, T.S., Grønnow, B. et al. , 2014. The genetic prehistory of the New World Arctic. Science 345, 1255832.CrossRefGoogle ScholarPubMed
Rasmussen, T.L., Bäckström, D., Heinemeier, J., Klitgaard-Kristensen, D., Knutz, P.C., Kuijpers, A., Lassen, S., Thomsen, E., Troelstra, S.R., van Weering, T.C.E., 2002. The Faroe–Shetland Gateway: Late Quaternary water mass exchange between the Nordic Seas and the northeastern Atlantic. Marine Geology 188, 165192.CrossRefGoogle Scholar
Rasmussen, T.L., Thomsen, E., Skirbekk, K., Slubowska-Woldengen, M., Klitgaard Kristensen, D., Koç, N., 2014. Spatial and temporal distribution of Holocene temperature maxima in the northern Nordic seas: Interplay of Atlantic-, Arctic- and polar water masses. Quaternary Science Reviews 92, 280291.CrossRefGoogle Scholar
Rasmussen, T.L., Thomsen, E., Ślubowska, M.A., Jessen, S., Solheim, A., Koç, N., 2007. Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP. Quaternary Research 67, 100114.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Rigual-Hernández, A.S., Colmenero-Hidalgo, E., Martrat, B., Bárcena, M.A., de Vernal, A., Sierro, F.J., Flores, J.A., Grimalt, J.O., Henry, M., Lucchi, R.G., 2017. Svalbard ice-sheet decay after the Last Glacial Maximum: new insights from micropalaeontological and organic biomarker paleoceanographical reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 465, 225236.CrossRefGoogle Scholar
Risebrobakken, B., Dokken, T., Smedsrud, L.H., Andersson, C., Jansen, E., Moros, M., Ivanova, E.V., 2011. Early Holocene temperature variability in the Nordic Seas: The role of oceanic heat advection versus changes in orbital forcing. Paleoceanography 26, PA4206. http://dx.doi.org/10.1029/2011PA002117.CrossRefGoogle Scholar
Risebrobakken, B., Moros, M., Ivanova, E., Chistyakova, N., Rosenberg, R., 2010. Climate and oceanographic variability in the SW Barents Sea during the Holocene. The Holocene 20, 609621.CrossRefGoogle Scholar
Rochon, A., de Vernal, A., Turon, J.-L., Matthiessen, J., Head, M.J., 1999. Distribution of Dinoflagellate Cyst Assemblages in Surface Sediments from the North Atlantic Ocean and Adjacent Basins and Quantitative Reconstruction of Sea Surface Parameters. American Association of Stratigraphic Palynologists Contribution Series, No. 35. American Association of Stratigraphic Palynologists Foundation, Dallas.Google Scholar
Rudels, B., Anderson, L.G., Jones, E.P., 1996. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. Journal of Geophysical Research: Oceans 101, 88078821.CrossRefGoogle Scholar
Sætre, R., Ljøen, R. 1972. The Norwegian Coastal Current. Proceedings from the First International Conference on Port and Ocean Engineering under Arctic Conditions 1, 514535.Google Scholar
Sarnthein, M., Kreveld, S., Erlenkeuser, H., Grootes, P., Kucera, M., Pflaumann, U., Schulz, M., 2003. Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75 N. Boreas 32, 447461.CrossRefGoogle Scholar
Schauer, U., Loeng, H., Rudels, B., Ozhigin, V.K., Dieck, W., 2002. Atlantic Water flow through the Barents and Kara Seas. Deep-Sea Research I 49, 22812298.CrossRefGoogle Scholar
Sejrup, H.-P., McKay, N.P., Kaufman, D.S, Geirsdottir, A., de Vernal, A., Renssen, H., Husum, K., Jennings, A., Andrews, J.T., 2016. North Atlantic-Fennoscandian Holocene climate trends and Mechanisms. Quaternary Science Reviews 147, 365378.CrossRefGoogle Scholar
Ślubowska, M.A., Koç, N., Rasmussen, T.L., Klitgaard-Kristensen, D., 2005. Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: evidence from the northern Svalbard continental margin, 80 N. Paleoceanography 20. http://dx.doir.org/10.1029/2005PA001141.CrossRefGoogle Scholar
Ślubowska-Woldengen, M., Koç, N., Rasmussen, T.L., Klitgaard-Kristensen, D., Hald, M., Jennings, A.E., 2008. Time-slice reconstructions of ocean circulation changes on the continental shelf in the Nordic and Barents Seas during the last 16,000 cal yr BP. Quaternary Science Reviews 27, 14761492.CrossRefGoogle Scholar
Ślubowska-Woldengen, M., Rasmussen, T.L., Koç, N., Klitgaard-Kristensen, D., Nilsen, F., Solheim, A., 2007. Advection of Atlantic Water to the western and northern Svalbard shelf since 17,500 cal yr BP. Quaternary Science Reviews 26, 463478.CrossRefGoogle Scholar
Smedsrud, L.H., Esau, I., Ingvaldsen, R.B., Eldevik, T., Haugan, P.M., Li, C., Lien, V.S. et al. , 2013. The role of the Barents Sea in the Arctic climate system. Reviews of Geophysics 51, 415449.CrossRefGoogle Scholar
Svendsen, J.I., Mangerud, J., 1997. Holocene glacial and climatic variations on Spitsbergen, Svalbard. The Holocene 7, 4557.CrossRefGoogle Scholar
Telford, R., Birks, H., 2009. Evaluation of transfer functions in spatially structured environments. Quaternary Science Reviews 28, 13091316.CrossRefGoogle Scholar
Telford, R.J., 2006. Limitations of dinoflagellate cyst transfer functions. Quaternary Science Reviews 25, 13751382.CrossRefGoogle Scholar
ter Braak, C.J.F., Smilauer, P., 2012. Canoco Reference Manual and User's Guide: Software for Ordination (Version 5). Microcomputer Power, Ithaca.Google Scholar
Van Nieuwenhove, N., Baumann, A., Matthiessen, J., Bonnet, S., de Vernal, A., 2016. Sea surface conditions in the southern Nordic Seas during the Holocene based on dinoflagellate cyst assemblages. The Holocene 26, 722735.CrossRefGoogle Scholar
Werner, K., Spielhagen, R.F., Bauch, D., Hass, H.C., Kandiano, E., 2013. Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: Multiproxy evidence for a two-phase Holocene. Paleoceanography 28, 283295.CrossRefGoogle Scholar
Zonneveld, K.A.F., Marret, F., Versteegh, G.J.M., Bonnet, S., Bouimetarhan, I., Crouch, E., de Vernal, A. et al. , 2013. Atlas of modern dinoflagellate cyst distribution based on 2405 datapoints. Review of Palaeobotany and Palynology 191, 1197.CrossRefGoogle Scholar
Zweng, M.M, Reagan, J.R., Antonov, J.I., Locarnini, R.A., Mishonov, A.V., Boyer, T.P., Garcia, H.E., et al. , 2013. World Ocean Atlas 2013. Volume 2: Salinity S. Levitus, Ed., A Mishonov, Technical Ed. NOAA Atlas NESDIS 74, 39 p.Google Scholar
Supplementary material: PDF

Brice et al. supplementary material

Brice et al. supplementary material 1

Download Brice et al. supplementary material(PDF)
PDF 108.8 KB
Supplementary material: File

Brice et al. supplementary material

Brice et al. supplementary material 2

Download Brice et al. supplementary material(File)
File 11.7 KB
Supplementary material: PDF

Brice et al. supplementary material

Brice et al. supplementary material 3

Download Brice et al. supplementary material(PDF)
PDF 65.7 KB
Supplementary material: PDF

Brice et al. supplementary material

Brice et al. supplementary material 4

Download Brice et al. supplementary material(PDF)
PDF 97.2 KB