Hostname: page-component-5b777bbd6c-f9nfp Total loading time: 0 Render date: 2025-06-18T17:00:37.273Z Has data issue: false hasContentIssue false

Stalagmite-based rare earth elements geochemistry from southwestern China and its implications for paleoenvironment

Published online by Cambridge University Press:  11 June 2025

Wei Huang
Affiliation:
School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China Department of Geographical Science, Yichun University, Yichun 336000, China
Yaoqi He
Affiliation:
College of Tourism and Air Service, Guizhou Minzu University, Guiyang 550025, China
Xiuyang Jiang*
Affiliation:
School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
Xiaoyan Wang
Affiliation:
School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
Chung-Che Wu*
Affiliation:
College of Marine Sciences and Engineering, Nanjing Normal University, Nanjing 210023, China High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, China
Chuan-Chou Shen
Affiliation:
High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, China
Chun-Yuan Huang
Affiliation:
High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of Geosciences, National Taiwan University, Taipei 10617, China
Yi Wang
Affiliation:
Department of Geography, School of Global Studies, University of Sussex, Brighton BN1 9QJ, UK
Guangxu Liu
Affiliation:
School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
*
Corresponding authors: Xiuyang Jiang; Email: xyjiang@fjnu.edu.cn; Chung-Che Wu; Email: chwuethz@163.com
Corresponding authors: Xiuyang Jiang; Email: xyjiang@fjnu.edu.cn; Chung-Che Wu; Email: chwuethz@163.com

Abstract

Rare earth elements (REEs) preserved in speleothems have garnered increasing attention as ideal proxies for the paleoenvironmental reconstruction. However, due to their typically low contents in stalagmites, the availability of stalagmite-based REE records remains limited. Here we present high-resolution REEs alongside oxygen isotope (δ18O) records in stalagmite SX15a from Sanxing Cave, southwestern China (110.1–103.3 ka). This study demonstrates that REE records could provide useful information for the provenance and formation process of the stalagmite, due to consistent distribution pattern across different periods indicating stable provenance. More interestingly, the total REE (ΣREE) record could serve as an effective indicator to reflect local hydrological processes associated with monsoonal precipitation. During Marine Isotopic Stage (MIS) 5d, a relatively low ΣREE content is consistent with the positive SX15a δ18O and negative NGRIP δ18O, reflecting a dry-cold environment; while during MIS 5c, a generally high ΣREE content suggests a humid-warm circumstance. Furthermore, the ΣREE record captured four prominent sub-millennial fluctuations within the Greenland interstadial 24 event, implying a combined influence by the regional climate and local soil redox conditions. Our findings indicate that the stalagmite-based REE records would be a useful proxy for better understanding of past climate and environment changes.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

W.H. and Y.H. contributed equally to this work.

References

Barrat, J.-A., Bayon, G., Wang, X., Le Goff, S., Rouget, M.-L., Gueguen, B., Ben Salem, D., 2020. A new chemical separation procedure for the determination of rare earth elements and yttrium abundances in carbonates by ICP-MS. Talanta 219, 121244. https://doi.org/10.1016/j.talanta.2020.121244CrossRefGoogle ScholarPubMed
Bolhar, R., Van Kranendonk, M.J., 2007. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Research 155, 229250.10.1016/j.precamres.2007.02.002CrossRefGoogle Scholar
Borsato, A., Frisia, S., Fairchild, I.J., Somogyi, A., Susini, J., 2007. Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence: implications for incorporation of environmentally significant species. Geochimica et Cosmochimica Acta 71, 14941512.10.1016/j.gca.2006.12.016CrossRefGoogle Scholar
Bourdin, C., Douville, E., Genty, D., 2011. Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave, southeastern France. Chemical Geology 290, 111.10.1016/j.chemgeo.2011.08.006CrossRefGoogle Scholar
Braun, J.-J., Pagel, M., Muller, J.-P., Bilong, P., Michard, A., Guillet, B., 1990. Cerium anomalies in lateritic profiles. Geochimica et Cosmochimica Acta 54, 781795.10.1016/0016-7037(90)90373-SCrossRefGoogle Scholar
Byrne, R.H., Sholkovitz, E.R., 1996. Chapter 158 Marine chemistry and geochemistry of the lanthanides. In: Gschneider, K.A. Jr., Eyring, L. (Eds.), Handbook on the Physics and Chemistry of Rare Earths. Elsevier, Amsterdam, pp. 497-593.Google Scholar
Capron, E., Landais, A., Chappellaz, J., Schilt, A., Buiron, D., Dahl-Jensen, D., Johnsen, S.J., et al., 2010. Millennial and sub-millennial scale climate variations recorded in polar ice cores over the last glacial period. Climate of the Past 6, 345365.10.5194/cp-6-345-2010CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Sinha, A., Spotl, C., Yi, L., Chen, S., Kelly, M., et al., 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640646.10.1038/nature18591CrossRefGoogle ScholarPubMed
Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., et al., 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters 371–372, 8291.10.1016/j.epsl.2013.04.006CrossRefGoogle Scholar
Cheng, H., Zhang, H., Zhao, J., Li, H., Ning, Y., Kathayat, G., 2019. Chinese stalagmite paleoclimate researches: a review and perspective. Science China Earth Sciences 62, 14891513.10.1007/s11430-019-9478-3CrossRefGoogle Scholar
Craddock, P.R., Bach, W., Seewald, J.S., Rouxel, O.J., Reeves, E., Tivey, M.K., 2010. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins. Geochimica et Cosmochimica Acta 74, 54945513.10.1016/j.gca.2010.07.003CrossRefGoogle Scholar
de Baar, H.J.W., Bruland, K.W., Schijf, J., van Heuven, S.M.A.C., Behrens, M.K., 2018. Low cerium among the dissolved rare earth elements in the central North Pacific Ocean. Geochimica et Cosmochimica Acta 236, 540.10.1016/j.gca.2018.03.003CrossRefGoogle Scholar
Deng, Y., Ren, J., Guo, Q., Cao, J., Wang, H., Liu, C., 2017. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific. Scientific Reports 7, 16539. https://doi.org/10.1038/s41598-017-16379-1CrossRefGoogle ScholarPubMed
Ding, W., Cao, J., Dong, J., Cong, J., Liang, Y., Huang, W., 2024. Strong coupling between the East Asian summer monsoon and regional hydrological conditions as evidenced by multiproxy stalagmite records for the last deglaciation. Quaternary Science Reviews 345, 109023. https://doi.org/10.1016/j.quascirev.2024.109023CrossRefGoogle Scholar
Ding, Z.L., Sun, J., Yang, S., Liu, T.S., 2001. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochimica et Cosmochimica Acta 65, 901913.10.1016/S0016-7037(00)00571-8CrossRefGoogle Scholar
Dong, J., Shen, C.-C., Kong, X., Wang, H., Jiang, X., 2015. Reconciliation of hydroclimate sequences from the Chinese Loess Plateau and low-latitude East Asian Summer Monsoon regions over the past 14,500 years. Palaeogeography, Palaeoclimatology, Palaeoecology 435, 127135.10.1016/j.palaeo.2015.06.013CrossRefGoogle Scholar
Drugat, L., Pons-Branchu, E., Douville, E., Foliot, L., Bordier, L., Roy-Barman, M., 2019. Rare earth and alkali elements in stalagmites, as markers of Mediterranean environmental changes during Termination I. Chemical Geology 525, 414423.10.1016/j.chemgeo.2019.08.001CrossRefGoogle Scholar
Edwards, R.L., Chen, J.H., Wasserburg, G.J., 1987. 238U–234U–230Th–232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81, 175192.10.1016/0012-821X(87)90154-3CrossRefGoogle Scholar
Fleet, A.J., 1984. Chapter 10 - Aqueous and sedimentary geochemistry of the rare earth elements. In: Henderson, P. (Ed.), Developments in Geochemistry. Elsevier, Amsterdam, pp. 343373.Google Scholar
Goldstein, S.J., Jacobsen, S.B., 1988. Rare earth elements in river waters. Earth and Planetary Science Letters 89, 3547.10.1016/0012-821X(88)90031-3CrossRefGoogle Scholar
Guo, H., Zhang, B., Wang, G., Shen, Z., 2010. Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin, Inner Mongolia. Chemical Geology 270, 117125.10.1016/j.chemgeo.2009.11.010CrossRefGoogle Scholar
Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., Sanganyado, E., 2018. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of the Total Environment 636, 299313.10.1016/j.scitotenv.2018.04.235CrossRefGoogle ScholarPubMed
Haley, B.A., Klinkhammer, G.P., McManus, J., 2004. Rare earth elements in pore waters of marine sediments. Geochimica et Cosmochimica Acta 68, 12651279.10.1016/j.gca.2003.09.012CrossRefGoogle Scholar
Han, G., Liu, C.-Q., 2007. Dissolved rare earth elements in river waters draining karst terrains in Guizhou Province, China. Aquatic Geochemistry 13, 95107.10.1007/s10498-006-9009-1CrossRefGoogle Scholar
Hao, Q., Guo, Z., Qiao, Y., Xu, B., Oldfield, F., 2010. Geochemical evidence for the provenance of Middle Pleistocene loess deposits in southern China. Quaternary Science Reviews 29, 33173326.10.1016/j.quascirev.2010.08.004CrossRefGoogle Scholar
Haskin, L.A., Haskin, M.A., Frey, F.A., Wildeman, T.R., 1968. Relative and absolute terrestrial abundances of the rare earths. In: Ahrens, L.H. (Ed.), Origin and Distribution of the Elements. Pergamon, Oxford, pp. . https://doi.org/10.1016/B978-0-08-012835-1.50074-XGoogle Scholar
Hori, M., Ishikawa, T., Nagaishi, K., You, C.-F., Huang, K.-F., Shen, C.-C., Kano, A., 2014. Rare earth elements in a stalagmite from southwestern Japan: a potential proxy for chemical weathering. Geochemical Journal 48, 7384.10.2343/geochemj.2.0287CrossRefGoogle Scholar
Ji, H., Wang, S., Ouyang, Z., Zhang, S., Sun, C., Liu, X., Zhou, D., 2004. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan–Guizhou Plateau. Chemical Geology 203, 2950.10.1016/j.chemgeo.2003.08.012CrossRefGoogle Scholar
Jiang, X., He, Y., Wang, X., Dong, J., Li, Z., Lone, M.A., Shen, C.-C., 2019. Sub-decadally-resolved Asian monsoon dynamics during Chinese interstadial 21 in response to northern high-latitude climate. Journal of Asian Earth Sciences 172, 243248.10.1016/j.jseaes.2018.09.017CrossRefGoogle Scholar
Jiang, X., Wang, X., He, Y., Hu, H.M., Li, Z., Spötl, C., Shen, C.C., 2016. Precisely dated multidecadally resolved Asian summer monsoon dynamics 113.5–86.6 thousand years ago. Quaternary Science Reviews 143, 112.10.1016/j.quascirev.2016.05.003CrossRefGoogle Scholar
Jiang, X., Wang, X., Yang, B., He, Y., Shen, C., Li, Z., 2014. Stalagmite-inferred abrupt climate change in the East Asian Monsoon at MIS 5d/5c in northern Guizhou Province. Chinese Science Bulletin (Chinese Version) 59, 26982706.10.1360/N972013-00020CrossRefGoogle Scholar
Lawrence, M.G., Greig, A., Collerson, K.D., Kamber, B.S., 2006. Rare earth element and yttrium variability in South East Queensland waterways. Aquatic Geochemistry 12, 3972.10.1007/s10498-005-4471-8CrossRefGoogle Scholar
Lei, G., Wang, C., Qian, Z., Zhang, Z., Yang, Z., Qi, L., 1994. REE geochemistry of karst sediments in Guizhou Province. [In Chinese with English abstract] Acta Mineralogica Sinica 14, 298308.Google Scholar
Leybourne, M.I., Johannesson, K.H., 2008. Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: fractionation, speciation, and controls over REE+Y patterns in the surface environment. Geochimica et Cosmochimica Acta 72, 59625983.10.1016/j.gca.2008.09.022CrossRefGoogle Scholar
Li, J.-Y., Li, T.-Y., Shen, C.-C., Yu, T.-L., Zhang, T.-T., Wu, Y., Zhou, J.-L., Chen, C.-J., Zhang, J., 2021. Variations and significance of Mg/Sr and 87Sr/86Sr in a karst cave system in southwest China. Journal of Hydrology 596, 126140. https://doi.org/10.1016/j.jhydrol.2021.126140CrossRefGoogle Scholar
Liu, X.-M., Hardisty, D.S., Lyons, T.W., Swart, P.K., 2019. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank. Geochimica et Cosmochimica Acta 248, 2542.10.1016/j.gca.2018.12.028CrossRefGoogle Scholar
Manoj, M.C., Thakur, B., Uddandam, P.R., 2021. Controls on rare earth elements distribution from Kerala coast, Southwest India over the past 2000 years. Environmental Forensics 24, 2843.10.1080/15275922.2021.1940383CrossRefGoogle Scholar
Mao, L., Mo, D., Li, M., Zhou, K., Yang, J., Guo, W., 2011. The rare earth element compositions of sediments from the loess tableland in the Liyang Plain, southern China: implications for provenance and weathering intensity. Environmental Earth Sciences 62, 16091617.10.1007/s12665-010-0644-xCrossRefGoogle Scholar
Nesbitt, H.W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279, 206210.10.1038/279206a0CrossRefGoogle Scholar
North Greenland Ice Core Project members, 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147151.10.1038/nature02805CrossRefGoogle Scholar
Nozaki, Y., 2001. Rare earth elements and their isotopes in the ocean. In: Steele, J.H. (Ed.), Encyclopedia of Ocean Sciences. Academic Press, Oxford, pp. 23542366.10.1006/rwos.2001.0284CrossRefGoogle Scholar
Nozaki, Y., Lerche, D., Alibo, D.S., Snidvongs, A., 2000. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand. Geochimica et Cosmochimica Acta 64, 39833994.10.1016/S0016-7037(00)00473-7CrossRefGoogle Scholar
Nozaki, Y., Zhang, J., Amakawa, H., 1997. The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters 148, 329340.10.1016/S0012-821X(97)00034-4CrossRefGoogle Scholar
Ohta, A., Kawabe, I., 2001. REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2. Geochimica et Cosmochimica Acta 65, 695703.10.1016/S0016-7037(00)00578-0CrossRefGoogle Scholar
Paul, S.A.L., Volz, J.B., Bau, M., Köster, M., Kasten, S., Koschinsky, A., 2019. Calcium phosphate control of REY patterns of siliceous-ooze-rich deep-sea sediments from the central equatorial Pacific. Geochimica et Cosmochimica Acta 251, 5672.10.1016/j.gca.2019.02.019CrossRefGoogle Scholar
Pausata, F.S.R., Battisti, D.S., Nisancioglu, K.H., Bitz, C.M., 2011. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geoscience 4, 474480.10.1038/ngeo1169CrossRefGoogle Scholar
Peng, X., Liu, Y., Liu, S., Cheng, K., Tian, L., Chen, Q., Zhou, H., 2019. Water-soluble rare earth elements in atmospheric deposition at Shihua Cave, Beijing, north China. Applied Geochemistry 105, 8796.10.1016/j.apgeochem.2019.04.007CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429436.10.1038/20859CrossRefGoogle Scholar
Pons-Branchu, E., Douville, E., Roy-Barman, M., Dumont, E., Branchu, P., François, T., Frank, N., Bordier, L., Borst, W., 2014. A geochemical perspective on Parisian urban history based on U–Th dating, laminae counting and yttrium and REE concentrations of recent carbonates in underground aqueducts. Quaternary Geochronology 24, 4453.10.1016/j.quageo.2014.08.001CrossRefGoogle Scholar
Pourret, O., Davranche, M., Gruau, G., Dia, A., 2008. New insights into cerium anomalies in organic-rich alkaline waters. Chemical Geology 251, 120127.10.1016/j.chemgeo.2008.03.002CrossRefGoogle Scholar
Qiu, H.-Y., Li, T.-Y., Chen, C.-J., Huang, R., Wang, T., Wu, Y., Xiao, S.-Y., et al., 2021. Significance of active speleothem δ18O at annual-decadal timescale—a case study from monitoring in Furong Cave. Applied Geochemistry 126, 104873. https://doi.org/10.1016/j.apgeochem.2021.104873CrossRefGoogle Scholar
Raza, W., Sawant, S., Ahmad, S.M., Sarma, D.S., Babu, E.V.S.S.K., 2023. Response of trace and rare earth elements to environmental changes in a stalagmite from southern India for the last deglaciation. Quaternary International 672, 4351.10.1016/j.quaint.2023.09.003CrossRefGoogle Scholar
Richter, D., Gotte, T., Niggemann, S., Wurth, G., 2004. REE3+ and Mn2+ activated cathodoluminescence in lateglacial and Holocene stalagmites of central Europe: evidence for climatic processes? The Holocene 14, 759768.10.1191/0959683604hl754rpCrossRefGoogle Scholar
Schwinn, G., Markl, G., 2005. REE systematics in hydrothermal fluorite. Chemical Geology 216, 225248.10.1016/j.chemgeo.2004.11.012CrossRefGoogle Scholar
Shen, C.-C., Lawrence Edwards, R., Cheng, H., Dorale, J.A., Thomas, R.B., Bradley Moran, S., Weinstein, S.E., Edmonds, H.N., 2002. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology 185, 165178.10.1016/S0009-2541(01)00404-1CrossRefGoogle Scholar
Shen, C.-C., Wu, C.-C., Cheng, H., Lawrence Edwards, R., Hsieh, Y.-T., Gallet, S., Chang, C.-C., et al., 2012. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochimica et Cosmochimica Acta 99, 7186.10.1016/j.gca.2012.09.018CrossRefGoogle Scholar
Shen, C.-C., Wu, C.-C., Liu, Y., Yu, J., Chang, C.-C., Lam, D.D., Chou, C.-J., Lo, L., Wei, K.-Y., 2011. Measurements of natural carbonate rare earth elements in femtogram quantities by inductive coupled plasma sector field mass spectrometry. Analytical Chemistry 83, 68426848.10.1021/ac201736wCrossRefGoogle ScholarPubMed
Sun, C., Wang, S., Ji, H., 2002. Formation mechanism of the superhigh concentration of REE and the strong negative Ce anomalies in the carbonate rock weathering profiles in Guizhou Province, China. [In Chinese with English abstract] Geochimica 31, 119128.Google Scholar
Surya Prakash, L., Ray, D., Paropkari, A.L., Mudholkar, A.V., Satyanarayanan, M., Sreenivas, B., Chandrasekharam, D., et al., 2012. Distribution of REEs and yttrium among major geochemical phases of marine Fe–Mn-oxides: comparative study between hydrogenous and hydrothermal deposits. Chemical Geology 312–313, 127137.10.1016/j.chemgeo.2012.03.024CrossRefGoogle Scholar
Tan, L., Cai, Y., Cheng, H., Edwards, L.R., Lan, J., Zhang, H., Li, D., Ma, L., Zhao, P., Gao, Y., 2018a. High resolution monsoon precipitation changes on southeastern Tibetan Plateau over the past 2300 years. Quaternary Science Reviews 195, 122132.10.1016/j.quascirev.2018.07.021CrossRefGoogle Scholar
Tan, L., Cai, Y., Cheng, H., Edwards, L.R., Lan, J., Zhang, H., Li, D., Ma, L., Zhao, P., Gao, Y., 2018b. Centennial-to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years. Earth and Planetary Science Letters 482, 580590.10.1016/j.epsl.2017.11.044CrossRefGoogle Scholar
Tan, L., Cai, Y., Cheng, H., Edwards, R.L., Shen, C.C., Gao, Y., An, Z., 2015. Climate significance of speleothem δ18O from Central China on decadal timescale. Journal of Asian Earth Sciences 106, 150155.10.1016/j.jseaes.2015.03.008CrossRefGoogle Scholar
Tan, L., Shen, C.-C., Cai, Y., Lo, L., Cheng, H., An, Z., 2014. Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in Central China. Quaternary Research 81, 181188.10.1016/j.yqres.2013.12.001CrossRefGoogle Scholar
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.Google Scholar
Turner, D.R., Whitfield, M., Dickson, A.G., 1981. The equilibrium speciation of dissolved components in freshwater and sea water at 25°C and 1 atm pressure. Geochimica et Cosmochimica Acta 45, 855881.10.1016/0016-7037(81)90115-0CrossRefGoogle Scholar
Tyler, G., 2004. Rare earth elements in soil and plant systems – a review. Plant and Soil 267, 191206.10.1007/s11104-005-4888-2CrossRefGoogle Scholar
Veres, D., Bazin, L., Landais, A., Kele, H.T.M., 2013. The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Climate of the Past 9, 17331748.10.5194/cp-9-1733-2013CrossRefGoogle Scholar
Wang, X., He, Y., Jiang, X., 2015. Precise dating of the Chinese-interstadial 24 event and its sub-cycles inferred from a high resolution stalagmite δ18O record in northern Guizhou Province. [In Chinese with English abstract] Quaternary Sciences 35, 14181424.Google Scholar
Wang, Y., Cheng, H., Edwards, R.L., An, Z., Wu, J., Shen, C.C., Dorale, J.A., 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294, 23452348.10.1126/science.1064618CrossRefGoogle ScholarPubMed
Wen, Q., Yu, S., Fuqing, S., Wang, Y., Chen, B., Tu, S., Sun, J., 1985. Rare-earth elements in Luochuan loess section, Shaanxi Province. Chinese Journal of Geochemistry 4, 172180.10.1007/BF03179337CrossRefGoogle Scholar
Wu, C.-C., Burger, M., Günther, D., Shen, C.-C., Hattendorf, B., 2018. Highly-sensitive open-cell LA-ICPMS approaches for the quantification of rare earth elements in natural carbonates at parts-per-billion levels. Analytica Chimica Acta 1018, 5461.10.1016/j.aca.2018.02.021CrossRefGoogle ScholarPubMed
Xiong, S., Sun, D., Ding, Z., 2002. Aeolian origin of the red earth in Southeast China. Journal of Quaternary Science 17, 181191.10.1002/jqs.663CrossRefGoogle Scholar
Yang, J., Yi, F., Liu, T., Li, H., 2005. REE geochemical characters of the lower Cambrian black shale series in northern Guizhou and their original significance. [In Chinese with English abstract] Chinese Journal of Geology 40, 8494.Google Scholar
Yang, S., Jung, H., Li, C., 2004. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments. Sedimentary Geology 164, 1934.10.1016/j.sedgeo.2003.08.001CrossRefGoogle Scholar
Yuan, D., Cheng, H., Edwards, R.L., Dykoski, C.A., Kelly, M.J., Zhang, M., Qing, J., et al., 2004. Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304, 575578.10.1126/science.1091220CrossRefGoogle ScholarPubMed
Zhang, H., Zhang, W., Chang, F., Yang, L., Lei, G., Yang, M., Pu, Y., Lei, Y., 2009. Geochemical fractionation of rare earth elements in lacustrine deposits from Qaidam Basin. Science China Earth Sciences 52, 17031713.10.1007/s11430-009-0097-9CrossRefGoogle Scholar
Zhang, J., Li, T.-Y., 2019. Seasonal and interannual variations of hydrochemical characteristics and stable isotopic compositions of drip waters in Furong Cave, southwest China based on 12 years’ monitoring. Journal of Hydrology 572, 4050.10.1016/j.jhydrol.2019.02.052CrossRefGoogle Scholar
Zhang, X., Zhang, H., Chang, F., Xie, P., Li, H., Wu, H., Ouyang, C., et al., 2021. Long-range transport of aeolian deposits during the last 32 kyr inferred from rare earth elements and grain-size analysis of sediments from Lake Lugu, Southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology 567, 110248. https://doi.org/10.1016/j.palaeo.2021.110248CrossRefGoogle Scholar
Zhang, Y., Zhang, J., Mao, R., 2019. REE composition and tracing characteristics of lower Cambrian black shale in Guizhou. [In Chinese with English abstract] Chinese Rare Earths 40, 719.Google Scholar
Zhao, Y., Wei, W., Li, S., Yang, T., Zhang, R., Somerville, I., Santosh, M., et al., 2021. Rare earth element geochemistry of carbonates as a proxy for deep-time environmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 574, 110443. https://doi.org/10.1016/j.palaeo.2021.110443CrossRefGoogle Scholar
Zhao, Y., Wei, W., Santosh, M., Hu, J., Wei, H., Yang, J., Liu, S., Zhang, G., Yang, D., Li, S., 2022. A review of retrieving pristine rare earth element signatures from carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 586, 110765. https://doi.org/10.1016/j.palaeo.2021.110765CrossRefGoogle Scholar
Zhong, S., Mucci, A., 1995. Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25°C and 1 atm, and high dissolved REE concentrations. Geochimica et Cosmochimica Acta 59, 443453.10.1016/0016-7037(94)00381-UCrossRefGoogle Scholar
Zhou, H., Chi, B., Lawrence, M., Zhao, J., Yan, J., Greig, A., Feng, Y., 2008a. High-resolution and precisely dated record of weathering and hydrological dynamics recorded by manganese and rare-earth elements in a stalagmite from Central China. Quaternary Research 69, 438446.10.1016/j.yqres.2008.02.005CrossRefGoogle Scholar
Zhou, H., Greig, A., Tang, J., You, C.-F., Yuan, D., Tong, X., Huang, Y., 2012. Rare earth element patterns in a Chinese stalagmite controlled by sources and scavenging from karst groundwater. Geochimica et Cosmochimica Acta 83, 118.10.1016/j.gca.2011.12.027CrossRefGoogle Scholar
Zhou, H., Wang, Q., Zhao, J., Zheng, L., Guan, H., Feng, Y., Greig, A., 2008b. Rare earth elements and yttrium in a stalagmite from Central China and potential paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 270, 128138.10.1016/j.palaeo.2008.09.001CrossRefGoogle Scholar
Supplementary material: File

Huang et al. supplementary material

Huang et al. supplementary material
Download Huang et al. supplementary material(File)
File 1.4 MB