Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-07T02:12:43.171Z Has data issue: false hasContentIssue false

AMS 14C Dates for Extinct Lemurs from Caves in the Ankarana Massif, Northern Madagascar

Published online by Cambridge University Press:  20 January 2017

Elwyn L. Simons
Affiliation:
Duke University Primate Center, Durham, North Carolina 27705
David A. Burney
Affiliation:
Department of Biological Sciences, Fordham University, Bronx, New York 10458
Prithijit S. Chatrath
Affiliation:
Duke University Primate Center, Durham, North Carolina 27705
Laurie R. Godfrey
Affiliation:
Department of Anthropology, University of Massachusetts, Amherst, Massachusetts 01003 Department of Anatomical Sciences, State University of New York, Stony Brook, New York 11794-8081
Berthe Rakotosamimanana
Affiliation:
Service de Paléontologie, Université d'Antananarivo, Antananarivo, Madagascar

Abstract

An extensive late Quaternary fauna, including many extinct giant lemurs, has been collected recently in a 110+-km system of caves in the Ankarana Massif of northern Madagascar. AMS 14C dates for the acid-insoluble (collagen/gelatin) fraction of bones of the giant lemur Megaladapis (26,150 ± 400 and 12,760 ± 70 yr B.P.) confirm its presence in the area during the late Pleistocene and provide the first Pleistocene 14 C ages from bones of the extinct megafauna of the island. The first date from bones of the recently described extinct Babakotia radofilai (4400 ± 60 yr B.P.) shows that it was present in northern Madagascar in mid-Holocene times. A comparatively recent age of 1020 ± 50 yr B.P. for the extinct Archaeolemur indicates survival of this genus for at least a millennium after the first direct evidence for humans in Madagascar. This suggests that the island's "extinction window" may have represented a longer time span than would have been expected under the Blitzkrieg model of late Quaternary extinctions. A mid-Holocene age (4560 ± 70 yr B.P.) for a bone sample of the small extant lemur Hapalemur simus indicates that the disappearance of this now-restricted species from the Ankarana occurred after this date. New data from the Ankarana and other sites on the island add to the consensus that major biotic changes occurred on Madagascar in the late Holocene.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Battistini, R., and V6rin, P. (1967). Ecologic changes in prehistoric Madagascar. In “Pleistocene Extinctions: The Search for a Cause” (Martin, P. S. and Klein, R. G., Eds.), pp. 407424. Yale Univ. Press, New Haven, CT.Google Scholar
Burney, D. A, (1987a). Late Quaternary stratigraphic charcoal records from Madagascar. Quaternary Research 28, 274280.Google Scholar
Burney, D. A. (1987b). Pre-settlement vegetation changes at Lake Tritrivakely, Madagascar. Palaeoecology of Africa 18, 357381.Google Scholar
Burney, D. A. (1987c). Late Holocene vegetational change in central Madagascar, Quaternary Research 28, 130143.CrossRefGoogle Scholar
Burney, D. A. (1993a). Recent animal extinctions: Recipes for disaster. American Scientist 81, 530541.Google Scholar
Burney, D. A. (1993b). Late Holocene environmental changes in arid southwestern Madagascar. Quaternary Research 40, 98106.Google Scholar
Burney, D. A., and MacPhee, R. D. E. (1988). Mysterious island: What killed Madagascar’s large native animals? Natural History 97(7), 4655.Google Scholar
Burney, D. A. James, H. F. Grady, F. V. Rafamantanantsoa, J.-G. Ramilisonina, R. Wright, H. T., and Cowart, J. B., in press. Environmental change, extinction, and human activity: Evidence from caves in NW Madagascar. Research and Exploration. Google Scholar
Dewar, R. E. (1984). Recent extinctions in Madagascar: the loss of the subfossil fauna. In “Quaternary Extinctions: A Prehistoric Revolution” (Martin, P. S. and Klein, R. G., Eds.), pp. 574593. Univ. Arizona Press, TUcson.Google Scholar
Dewar, R. E., and Rakotovololona, S. (1992). La chasse aux subfossiles: Les preuves du Xlleme siecle au XlUeme siecle. Taloha 11, 415.Google Scholar
Godfrey, L. R. (1986). The tale of the tsy-aomby-aomby. The Sciences 1986, 4951.Google Scholar
Godfrey, L. R., and Vuillaume-Randriamanantena, M. (1986). Hapalemur simus: Endangered lemur once widespread. Primate Conservation 7, 9296.Google Scholar
Godfrey, L. R. Simons, E. L. Chatrath, P. S., and Rakotosamimanana, B. (1990). A new fossil lemur (Babakotia, Primates) from northern Madagascar. Comptes Rendus de VAcademe des Sciences, Paris 310, 8187.Google Scholar
Godfrey, L. R. Jungers, W. L. Simons, E, L. Chatrath, P. S., and Rakotosamimanana, B. (1992). The evolution of sloth lemurs, American Journal of Physical Anthropology (Suppl.) 14, 82.Google Scholar
James, H. F. Stafford, T. W. Jr. Steadman, D. W. Olson, S. L. Martin, P. S. Jull, A. J. T., and McCoy, P. C. (1987). Radiocarbon dates on bones of extinct birds from Hawaii. Proceedings of the National Academy of Sciences, USA 84, 23502354.Google Scholar
Jungers, W. L. Godfrey, L. R. Simons, E. L. Chatrath, P. S., and Rakotosamimanana, B. (1991). Phylogenetic and functional affinities of Babakotia (Primates), a fossil lemur from northern Madagascar. Proceedings of the National Academy of Sciences USA 88, 90829086.Google Scholar
Long, A. Hendershott, R. B., and Martin, P. S. (1983). Radiocarbon dating of fossil eggshell. Radiocarbon 25, 533539.Google Scholar
MacPhee, R. D. E., and Burney, D. A. (1991). Dating of modified femora of extinct dwarf Hippopotamus from southern Madagascar: Implications for constraining human colonization and vertebrate extinction events. Journal of Archaeological Science 18, 695706.CrossRefGoogle Scholar
MacPhee, R. D. E. Burney, D. A., and Wells, N. A. (1985). Early Holocene chronology and environment of Ampasambazimba, a Malagasy subfossil lemur site. International Journal of Primatology 6(5), 463489.Google Scholar
Mah£, J., and Sourdat, M. (1972). Sur 1’extinction des vert£br£s subfossiles et 1’aridification du climat dans le sud-ouest de Madagascar. Bulletin de la Societe Geologique de France 14, 295309.Google Scholar
Martin, P. S. (1984). Prehistoric overkill: the global model. In “Quaternary Extinctions: A Prehistoric Revolution” (Martin, P. S. and Klein, R. G., Eds.), pp. 354403. Univ. Arizona Press, Tucson.Google Scholar
Matsumoto, K., and Burney, D. A. (1994). Late Holocene environments at Lake Mitsinjo, northwestern Madagascar. The Holocene 4(1), 1725.Google Scholar
Mead, J. I., and Meltzer, D. 3. (1984). North American late Quaternary extinctions and the radiocarbon record. In “Quaternary Extinctions: A Prehistoric Revolution” (Martin, P. S. and Klein, R. G., Eds.), pp. 440450. Univ. Arizona Press, TUcson.Google Scholar
Raybaud, (1902). Rapport de M. l’administrateur Raybaud sur les gisements fossiliferes d’Ampasambazimba. Bulletin de VAcadimie Malgache 1(2), 6467.Google Scholar
Reyes, N. (1993). “The Modem Diatom Spectra of Madagascar and Diatom-Inferred Late Quaternary Climatic Changes in Northeastern and Central Madagascar.” Ph.D. dissertation, Fordham University, New York.Google Scholar
Simons, E, L, Godfrey, L. R. Vuillaume-Randriamanantena, M. Chatrath, P. S., and Gagnon, M. (1990). Discovery of new giant subfossil lemurs in the Ankarana Mountains of northern Madagascar. Journal of Human Evolution 19, 311319.Google Scholar
Simons, E. L. Godfrey, L. R. Jungers, W. L. Chatrath, P. S., and Rakotosamimanana, B. (1992). A new giant subfossil lemur, Babako-tia, and the evolution of the sloth lemurs. Folia Primatologica 58, 197203.Google Scholar
Simons, E. L. Godfrey, L. R. Jurgers, W. L. Chatrath, P. S., and Ravaodrisod, J., in press. A new species of Mesopropithecus (Pri-mates, Palaeopropithecidae) from northern Madagascar. International Journal of Primatology. Google Scholar
Stafford, T. W. Jr. Hare, P. E. Currie, L. Jull, A. J. T., and Donahue, D. J. (1991). Accelerator radiocarbon dating at the molecular level. Journal of Archaeological Science 18, 3572.Google Scholar
Steadman, D. W. Stafford, T. W„ Jr. Donahue, D. J., and Jull, A. J. T. (1991). Chronology of Holocene vertebrate extinction in the Galapagos Islands. Quaternary Research 36, 126133.Google Scholar
Stuiver, M., and Pearson, G. W, (1986). High-precision calibration of the radiocarbon time scale, AD 1950-500 BC. Radiocarbon 28, 805838.Google Scholar
Sues, H.-D. (1980). A pachycephalosaurid dinosaur from the Upper Cretaceous of Madagascar and its paleogeographical implications. Journal of Paleontology 54, 954962.Google Scholar
Talma, A. S., and Vogel, J. C. (1993). A simplified approach to the calibration of radiocarbon dates. Radiocarbon 35(2), 317322.Google Scholar
Tattersall, I. (1982). “The Primates of Madagascar.” Columbia Univ. Press, New York.Google Scholar
Vogel, J. C. Fuls, A. Visser, E., and Becker, B. (1993). Pretoria calibration curve for short-lived samples, 1930-3350 B.C. Radiocarbon 35(J), 7386.Google Scholar
Vuillaume-Randriamanantena, M. Godfrey, L. R., and Sutherland, M. R. (1985). Revision of Hapalemur (Prohapalemur) gallieni (Standing, 1905). Folia Primatologica 45, 89116.Google Scholar
Wilson, J. (1987a). The Crocodile Caves of Ankarana: Expedition to northern Madagascar, 1986. Cave Science 14(3), 107119.Google Scholar
Wilson, J. (1987b). The crocodile caves of Ankarana, Madagascar. Oryx 21(1), 4347.Google Scholar
Wright, H. T. Andrianalvoarivony, R. Bailiff, I. Burney, D. Haas, H. Raharijaona, V. Rakotovololona, S. Rasamuel, D., and Dewar, R. (1992). Datation absolue de sites arch£ologiques du centre de Madagascar—presentation des determinations. Taloha 11, 121146.Google Scholar