Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T10:25:06.765Z Has data issue: false hasContentIssue false

Atmospheric Aerosol Loading and Transport Due to the 1783-84 Laki Eruption in Iceland, Interpreted from Ash Particles and Acidity in the GISP2 Ice Core

Published online by Cambridge University Press:  20 January 2017

R. Joseph Fiacco Jr.
Affiliation:
Glacier Research Group, Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire 03824
Thorvaldur Thordarson
Affiliation:
Department of Geology and Geophysics, School of Ocean and Earth Sciences and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822
Mark S. Germani
Affiliation:
McCrone Associates, Westmont, Illinois 60559
Stephen Self
Affiliation:
Department of Geology and Geophysics, School of Ocean and Earth Sciences and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822
Julie M. Palais
Affiliation:
Glacier Research Group, Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire 03824; and Division of Polar Programs, National Science Foundation, Washington, DC 20550
Sallie Whitlow
Affiliation:
Glacier Research Group, Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire 03824
Peter M. Grootes
Affiliation:
Quaternary Isotope Laboratory, AK-60, University of Washington, Seattle, Washington 98195

Abstract

Glass shards from the A.D. 1783 Laki fissure eruption in Iceland have been identified in the GISP2 ice core from Summit, Greenland, at a level just preceding the major acidity/sulfate peak. Detailed reconstruction of ice stratigraphy, coupled with analyses of solid particles from filtered samples, indicate that a small amount of Laki ash was carried via atmospheric transport to Greenland in the summer of 1783, whereas the main aerosol precipitation occurred in the summer and early fall of 1784. Sulfate concentrations in the ice increase slightly during late summer and fall of 1783 and remain steady throughout the winter due to slow oxidation rates during this season in the Arctic. The sulfate concentration rises dramatically in the spring and summer of 1784, producing a massive sulfate peak, previously believed to have accumulated during the summer of 1783 and commonly used as the marker horizon in Greenland ice core studies. The chronology of ash and acid fallout at the GISP2 site suggests that a significant portion of the Laid eruption plume penetrated the tropopause and that aerosol generated from it remained aloft for at least 1 yr after the eruption. Based on comparisons with other glaciochemical seasonal indicators, abnormally cool conditions prevailed at Summit during the summer of 1784. This further supports the claim that a significant volume of sulfate aerosol remained in the Arctic middle atmosphere well after the eruption had ceased.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angell, J. K., and Korshover, J. (1985). Surface temperature changes following the six major volcanic episodes between 1780 and 1980. Journal of Climate and Applied Meteorology 24, 937951.2.0.CO;2>CrossRefGoogle Scholar
Arakawa, H. (1955). Meteorological conditions of the great famines in the last half of the Tokugawa Perios, Japan. Meteorology and Geophysics 6, 5368.Google Scholar
Baron, W. R. (1992). Historical climate records from the northeastern United States, 1640-1900. In “Climate Since A.D. 1500” (Bradley, R. S. and Jones, P. D., Eds.), pp. 7491. Routledge, London.Google Scholar
Bradley, R. S. (1987). The explosive volcanic eruption record in Northern Hemisphere and continental temperature records. Climatic Change 12, 221243.Google Scholar
Camuffo, D., and Enzi, S. (1992). Reconstructing the climate of northern Italy from archive sources. In “Climate Since A.D. 1500” (Bradley, R. S. and Jones, P. D., Eds.), pp. 143154. Routledge, London.Google Scholar
Clausen, H. B., and Hammer, C. U. (1988). The Laki and Tambora eruptions as revealed in the Greenland ice cores from 11 locations. Annals of Glaciology 10, 1622.CrossRefGoogle Scholar
Cuffey, K. M. Alley, R. B. Grootes, P. M. Bolzan, J. F., and Anandakrishan, S. (1994). Calibration of the 6180 isotopic paleothermometer for Central Greenland, using borehole temperatures. Journal of Glaciology 40, 341349.CrossRefGoogle Scholar
Devine, J. D. Sigurdsson, H. Davis, A. N., and Self, S. (1984). Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climatic effects. Journal of Geophysical Research 89, 63096325.CrossRefGoogle Scholar
Fiacco, R. J. (1991). “Microparticles As a Paleovolcanic Indicator in the 1989 GISP2 Fim and Ice Core.” Unpublished MS thesis, University of New Hampshire.Google Scholar
Fiacco, R. J. Palais, J. M. Germani, M. S. Zielinski, G. A., and Mayewski, P. A. (1993). Characteristics and possible source of A.D. 1479 volcanic ash layer in a Greenland ice core. Quaternary Research 39, 267273.CrossRefGoogle Scholar
Franklin, B. (1984). Meteorological imaginations and conjectures. Manchester Literary and Philosophical Society Memoirs and Proceedings 2, 122.Google Scholar
Germani, M. S., and Buseck, P. R. (in press). Evaluation of automated scanning electron microscopy for atmospheric particle analysis. Analytical Chemistry. Google Scholar
Hammer, C. U. (1977a). Past volcanism revealed by Greenland ice sheet impurities. Nature 270, 482486.CrossRefGoogle Scholar
Hammer, C. U. (1977b). Dating of Greenland ice cores by microparticle concentration analyses. “Symposium on Isotopes and Impurities in Snow and Ice in Grenoble (Proceedings of the Grenoble Symposium, 1975),” IAHS-AISH Publication 118, pp. 297330. Grenoble.Google Scholar
Hammer, C, U. (1984). Traces of Icelandic eruptions in the Greenland ice sheet. Jokull 34, 5165.Google Scholar
Hammer, C. U. Clausen, H. B. Dansgaard, W. Gundestrup, N. Johnsen, S. J., and Reeh, N. (1978). Dating of Greenland ice cores by flow models, isotopes, volcanic debris, and continental dust. Journal of Glaciology 20, 326.Google Scholar
Hammer, C. U. Clausen, H. B. Dansgaard, W. (1980). Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature 288, 230235.CrossRefGoogle Scholar
Hammer, C. U. Clausen, H. B. Dansgaard, W. (1981). Past volcanism and climate revealed by Greenland ice cores. Journal of Volcanology and Geothermal Research 11, 310.CrossRefGoogle Scholar
Hansen, J., and Lebedeff, S. (1987). Global trends of measured surface air temperature. Journal of Geophysical Research 92, 1334513372.CrossRefGoogle Scholar
Hansen, J. Laccis, A. Ruedy, R. Sato, M., and Wilson, H. (1993). How Sensitive is the Worlds climate? National Geographic Research and Exploration 9, 142158.Google Scholar
H61m, S. M. (1794). “About the Earth Fire in Iceland in the Year 1783.” Peder Horrebow, Copenhagen, [in Danish] Google Scholar
Jaenicke, R. (1984). Physical aspects of the atmospheric aerosol. In“Aerosols and Their Climatic Effects” (Gerber, H. E. and Deepak, A, Eds.), pp. 734. Deepak Publishing, Hampton.Google Scholar
Jones, P. D.. Raper, S. C. B. Santer, B. D. Cherry, B. S. G. Goodess, C. Bradley, R. S. Diaz, H. F. Kelly, P. M., and Wigley, T. M. L. (1985). “A Grid Point Surface Air Temperature Data Set for the Northern Hemisphere, 1851-1984.” U.S. Department of Energy Technical Report TR022.Google Scholar
Jones, P. D. Wigley, T. M. L., and Wright, P. B. (1986). Global temperature variations between 1861 and 1984. Nature 322, 430434.CrossRefGoogle Scholar
Kaemtz, L. F. (1845). “A Complete Course of Meteorology.” Hippolyte Ballifere, London. [English translation by C. V. Walker] Google Scholar
Kington, J. A. (1978). Historical daily synoptic weather maps from the 1780’s. Journal of Meteorology 3, 6570.Google Scholar
Kington, J. A. (1988). “The Weather of the 1780’s Over Europe.” Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
Kunen, S. M. Lazrus, A. L. Kok, G. L., and Heikes, B. G. (1983). Aqueous oxidation of S02 by hydrogen peroxide. Journal of Geophysical Research 88, 36713674.CrossRefGoogle Scholar
Laj, P. Drummey, S. M. Spencer, M. J. Palais, J. M., and Sigurdsson, H. (1990). Depletion of H202 in a Greenland ice core: Implications for oxidation of volcanic S02. Nature 346, 4548.CrossRefGoogle Scholar
Lamanon, de R. P. C. (1799). Observations on the Nature of the fog of 1783. Alexander Ttlloch’s Philosophical Magazine, 8089. [First published in Journal de Physique in 1783] CrossRefGoogle Scholar
Lamb, H. H. (1970). Volcanic dust in the atmosphere; with a chronology and assessment of its meteorological significance. Philosophical Transactions of the Royal Society of London 266, 425533.Google Scholar
Lamb, H. H. (1972). “Climate: Present, Past, and Future. Fundamentals and Climate Now.” Methuen, London.Google Scholar
Lamb, H. H. (1977). “Climate: Present, Past, and Future. Climatic History and Future.” Methuen, London.Google Scholar
Ludlum, D. M. (1966). “Early American Winters.” American Meteorological Society, Boston.Google Scholar
Magnusson, S. (1983). Short but accurate narrative on the eruption in Vestur-Skaftafell county in Iceland in the year 1783, dated 22 December 1783. In “Skaftareldar 1783-84: Ritgerdir og Heimildir” (Gunnlaugsson, G. A. Gudbergsson, G. M. Thorarinsson, S. Rafnsson, S., and Einarsson, Th., Eds.), pp. 289292. M&log Menning, Reykjavfk. [in Icelandic] Google Scholar
Mayewski, P. A. Lyons, W. B. Spencer, M. J. Twickler, M. Dansgaard, W. Koci, B. Davidson, C. I. Honrath, R. E. (1986). Sulfate and nitrate concentrations from a south Greenland ice core. Science 232, 975977.CrossRefGoogle ScholarPubMed
Mayewski, P. A. Lyons, W. B. Spencer, M. J. Twickler, M. S. Buck, C. F,, Whitlow, S. (1990). An ice-core record of atmospheric response to anthropogenic sulphate and nitrate. Nature 346, 554556.CrossRefGoogle Scholar
Melanderhjelm, D. (1784). Afhandlingar om Vaderleken f0rlidende Sommar ar 1783. Konglige Vetenskaps Academiens Nya Handlinger/0r Mdntjdeme Jammrius. Februaries. Marliws 5, 319.Google Scholar
Metrich, N. Sigurdsson, H. Meyers, P. S., and Devine, J. D. (1991). The 1783 Lakagigar eruption in Iceland, geochemistry, C02 and sulfur degassing. Contribution to Mineralology and Petrology 107, 435447.CrossRefGoogle Scholar
Mikami, T., and Tsukamura, Y. (1992). The climate of Japan in 1816 as compared with an extremely cool summer climate in 1783. In “The Year Without a Summer?” (Harrington, C. R., Ed.), pp. 462476. Canadian Museum of Nature, Ottawa.Google Scholar
Mooley, D, A., and Pant, G. B. (1981). Droughts in India over the last 200 years, their socio-economic impacts and remedial measures for them. In “Climate and History: Studies in Past Climates and Their Impact on Man” (Wigley, T, M. L. , M. J. Ingram, , and Farmer, G., Eds.), pp. 465478. Cambridge Univ. Press, Cambridge.Google Scholar
Ogilvie, A. E. J. (1986). The climate of Iceland, 1701-1784. Jokull 36, 5773.Google Scholar
Oskarsson, N. Gronvold, K., and Larsen, G. (1984). The haze associated with the Laki eruption. In “Skaft&reldar 1783-1784: Ritgerdir og heimildir” (Gunnlaugsson, G. A. Gudbergsson, G. M. Thorarinsson, S. Rafnsson, S., and Einarsson, Th., Eds.), pp. 6780. M£1 og Menning, Reykjavik, [in Icelandic] Google Scholar
Rampino, M. R., and Self, S. (1984). Sulphur-rich volcanic eruptions and stratospheric aerosols. Nature 310, 677679.CrossRefGoogle Scholar
Renovantz, H. M. (1788). “Mineralogisch-Geographische und Andere Vermischte Nachrichten von den Altaischen Geburgen.” Reval, St. Petersburg.Google Scholar
Roberjot, (1784). Lettre aux auteurs du Journal de Physique sur un phdnomene du brouillard de 1783. Journal de Physique 24, 399400.Google Scholar
Self, S. (1990). Volcano Paloclimate. In “Volcanism-Climate Interactions” (Walter, L. S. and de Silva, S., Eds.), pp. 513. NASA Conference Publication 100062, Maryland.Google Scholar
Self, S. Rampino, M. R., and Barbera, J. J. (1981). The possible effects of large 19th and 20th century volcanic eruptions on zonal and hemispheric surface temperatures. Journal of Volcanology and Geothermal Research 11, 4160.CrossRefGoogle Scholar
Shapiro, M. A. Schnell, R. C. Parungo, F. P. Oilmans, S. J., and Bodhaine, B. A. (1984). El Chich6n volcanic debris in an Arctic tropopause fold. Geophysical Research Letters 11, 421424.CrossRefGoogle Scholar
Sigurdsson, H. (1982). Volcanic Pollution and climate: The 1783 Laki eruption. Eos 63, 601602.CrossRefGoogle Scholar
Sigurdsson, H. (1990). Evidence of volcanic loading of the atmosphere and climate response. Palaeo 89, 277289.Google Scholar
Soulavie, G. (1783). Lettre de M. 1’Abbe Giraud Soulavie au R. P. Cotte, de l’Oratory, Curd de Montmorency: Observations physiques sur un nuage apparent observe en Bourgogne. Journal de Paris 202 and 203.Google Scholar
Steffensen, J. P. (1985). Microparticles in snow from the South Greenland ice sheet. Tellus 37B, 286295.CrossRefGoogle Scholar
Steinth6rsson, S. (1992). Annus mirabilis; The year 1783 according to various contemporary accounts. Skirnir 166, 133159. [in Icelandic] Google Scholar
Swinden, van S. P. (1783). Observations on the cloud which appeared in June 1783. In “Ephemerides Societatis Meteorologicae Palatinae, Observationes Anni 1783”. (Fr. Schwan, C., Ed.), pp. 679688. Mannheim. [In Latin] Google Scholar
Taylor, K. Alley, R. Fiacco, J. Grootes, P. Lamorey, G. Mayewski, P., and Spencer, M. J. (1992). Comments on the electrical conductivity method (ECM) of investigating ice cores. Journal of Glaciology 38, 325331 CrossRefGoogle Scholar
Thompson, L. G. (1977). Variations in microparticle concentration, size distribution and elemental composition found in Camp Century, Greenland, and Byrd Station, Antartica, deep cores. “Symposium on Isotopes and Impurities in Snow and Ice (Proceedings of the Grenoble Symposium, 1975),” 1AHS-A1SH Publication 118, pp. 351364. Grenoble.Google Scholar
Thorarinsson, S. (1979). On the damage caused by volcanic eruptions with special references to tephra and gases. In “Volcanic Activity and Human Ecology” (Sheets, P.D. and Grayson, D. K., Eds.), pp. 125159. Academic Press, New York.CrossRefGoogle Scholar
Thorarinsson, S. (1981). Greetings from Iceland: Ash-falls and volcanic aerosols in Scandinavia. Geografisker Annaler 63, 109118.Google Scholar
Thordarson, Th., and Self, S. (1993). The Laki (Skaft£r Fires) and Grimsvotn eruptions in 1783-85. Bulletin of Volcanology 55, 233263.CrossRefGoogle Scholar
Thordarson, Th. Self, S., and Steinth6rsson, S. (1993). Aerosol loading of the Laki fissure eruption and its impact on climate. Eos 74, 106.Google Scholar
Thoroddsen, Th. (1914). The Volcanic Haze, 1783. In “Afmaslisrit til Dr. Phil K Kaalunds.” Hid fslenska fraedaKlag, Copenhagen, pp. 88107. [in Icelandic] Google Scholar
Thoroddsen, Th. (1925). “Die Geschichte der islandischen Vulkane.” Konglige Danske Videnskabens Selskab, Copenhagen.Google Scholar
Traumuller, F. (1885). Die trockenen Nebel, Dammerungen und vulkanische Ausbriiche des Jahres 1783. Meterologische Zeitschrift, March-April 1885, 138140.Google Scholar
White, G. (1789). “The Natural History of Selboume.” Penguin, New York.Google Scholar
Woods, A. W. (1993). A model of the plumes above basaltic fissure eruptions. Geophysical Research Letters 20, 11151118.CrossRefGoogle Scholar
Wood, C. A. (1992). Climatic effects of the 1783 Laki eruption. In “The Year Without a Summer?” (Harrington, C. R., Ed.), pp. 5877. Canadian Museum of Nature, Ottawa.Google Scholar