Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-15T06:37:16.478Z Has data issue: false hasContentIssue false

Bedload-to-suspended load ratio and rapid bedrock incision from Himalayan Landslide-dam lake record

Published online by Cambridge University Press:  20 January 2017

Beth Pratt-Sitaula*
Affiliation:
Department of Earth Sciences, University of California, Santa Barbara, CA 93106, USA
Michelle Garde
Affiliation:
Department of Earth Sciences, University of California, Santa Barbara, CA 93106, USA Kleinfelder, Inc., 8 Pasteur, Suite 190, Irvine, CA 92618, USA
Douglas W. Burbank
Affiliation:
Department of Earth Sciences, University of California, Santa Barbara, CA 93106, USA
Michael Oskin
Affiliation:
Department of Geological Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Arjun Heimsath
Affiliation:
Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
Emmanuel Gabet
Affiliation:
Department of Geology, University of California Riverside, Riverside, CA 92521, USA
*
*Corresponding author. Current address: Department of Geological Sciences, Central Washington University, Ellensburg, WA 98926, USA.E-mail address:psitaula@geology.cwu.edu (B. Pratt-Sitaula)

Abstract

About 5400 cal yr BP, a large landslide formed a > 400-m-tall dam in the upper Marsyandi River, central Nepal. The resulting lacustrine and deltaic deposits stretched > 7 km upstream, reaching a thickness of 120 m. 14C dating of 7 wood fragments reveals that the aggradation and subsequent incision occurred remarkably quickly (∼ 500 yr). Reconstructed volumes of lacustrine (∼ 0.16 km3) and deltaic (∼ 0.09 km3) deposits indicate a bedload-to-suspended load ratio of 1:2, considerably higher than the ≤ 1:10 that is commonly assumed. At the downstream end of the landslide dam, the river incised a new channel through ≥ 70 m of Greater Himalayan gneiss, requiring a minimum bedrock incision rate of 13 mm/yr over last 5400 yr. The majority of incision presumably occurred over a fraction of this time, suggesting much higher rates. The high bedload ratio from such an energetic mountain river is a particularly significant addition to our knowledge of sediment flux in orogenic environments.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, J. (1848). Report on the cataclysm of the Indus taken from the lips of an eyewitness. Asiatic Society of Bengal, 17, Google Scholar
Alley, R.B., Lawson, D.E., Larson, G.J., Evenson, E.B., Baker, G.S.(2003). Stabilizing feedbacks in glacier-bed erosion. Nature, 424, 758760.CrossRefGoogle ScholarPubMed
Anderson, R.S. (1998). Beta Analytic Inc C-14 Dating Report.. (Unpublished report).Google Scholar
Attal, M. (2002). Data collected as part of PhD dissertation.. (Unpublished field notes).Google Scholar
Attal, M., Lave, J.(2006). Changes of bedload characteristics along the Marsyandi River (central Nepal); implications for understanding hillslope sediment supply, sediment load evolution along fluvial networks, and denudation in active orogenic belts. Willett, S.D., Hovius, N., Brandon, M.T., Fisher, D.M. Special Paper-Geological Society of America, vol. 398, 143171.Google Scholar
Barros, A.P., Joshi, M., Putkonen, J., Burbank, D.W.(2000). A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophysical Research Letters, 27, 36833686.CrossRefGoogle Scholar
Beaumont, C., Jamieson, R.A., Nguyen, M.H., Lee, B.(2001). Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414, 738742.Google Scholar
Belcher, M. (1859). The flooding of the Indus; letter addressed to R. H. Davis. Asiatic Society of Bengal Journal, 27, 219228.Google Scholar
Brozovic, N., Burbank, D.W., Meigs, A.J.(1997). Climatic limits on landscape development in the northwestern Himalaya. Science, 276, 571574.CrossRefGoogle Scholar
Brune, G.M. (1953). Trap efficiency of reservoirs. Transactions of the American Geophysical Union, 34, 407418.Google Scholar
Burbank, D.W., Leland, J., Fielding, E., Anderson, R.S., Brozovic, N., Reid, M.R., Duncan, C.(1996). Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379, 505510.CrossRefGoogle Scholar
Burbank, D.W., Blythe, A.E., Putkonen, J., Pratt-Sitaula, B., Gabet, E., Oskin, M., Barros, A., Ojha, T.P.(2003). Decoupling of erosion and precipitation in the Himalayas. Nature, 426, 652655.Google Scholar
Churchill, M.A. (1948). Discussion of “Analysis and use of reservoir sedimentation data”. Gottschalk, L.C.. Proceedings of the Federal Interagency Sedimentation Conference. Bureau of Reclamation, US Department of the Interior, Washington, DC., 139140.Google Scholar
Colchen, M., Le Fort, P., Pecher, A.(1986). Annapurna-Manaslu-Ganesh Himal. Centre National de la Recherche Scientifique, Paris., 75136.Google Scholar
Coleman, M.E. (1996). Orogen-parallel and orogen-perpendicular extension in the central Nepalese Himalayas. Geological Society of America Bulletin, 108, 15941607.2.3.CO;2>CrossRefGoogle Scholar
Collins, D.N. (1998). Suspended sediment flux in meltwaters draining from Batura glacier as an indicator of the rate of glacial erosion in the Karakoram mountains. Journal of Quaternary Science, 13, 110.Google Scholar
Drew, F. (1875). Jammoo and Kashmir Territories. Edward Stanford, London.Google Scholar
Enzel, Y., Ely, L.L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., Rajaguru, S.N., Baker, V.R., Sandler, A.(1999). High-resolution Holocene environmental changes in the Thar Desert, northwestern India. Science, 284, 125128.Google Scholar
Ermini, L., Casagli, N.(2003). Prediction of the behaviour of landslide dams using a geomorphological dimensionless index. Earth Surface Processes and Landforms, 28, 3147.Google Scholar
Eugene, F.S. (1951). Measurement of bed-load sediment. Transactions of the American Geophysical Union, 32, 123126.Google Scholar
France-Lanord, C., Derry, L.A.(1997). Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390, 6567.CrossRefGoogle Scholar
Gabet, E.J., Burbank, D.W., Putkonen, J.K., Pratt-Sitaula, B.A., Ojha, T.(2004). Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphology, 63, 131143.CrossRefGoogle Scholar
Galy, A., France-Lanord, C.(2001). Higher erosion rates in the Himalaya; geochemical constraints on riverine fluxes. Geology, 29, 2326.Google Scholar
Gasse, F., Fontes, J.C., Van Campo, E., Wei, K.(1996). Holocene environmental changes in Bangong Co basin (western Tibet): Part 4. Discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology, 120, 7992.CrossRefGoogle Scholar
Hallet, B., Hunter, L., Bogen, J.(1996). Rates of erosion and sediment evacuation by glaciers; a review of field data and their implications. Solheim, A., Riis, F., Elverhoi, A., Faleide, J.I., Jensen, L.N., Cloetingh, S.. Impact of Glaciations on Basin Evolution; Data and Models from the Norwegian Margin and Adjacent Areas. Elsevier, Amsterdam., 213235.Google Scholar
Hartshorn, K., Hovius, N., Dade, W.B., Slingerland, R.L.(2002). Climate-driven bedrock incision in an active mountain belt. Science, 297, 20362038.CrossRefGoogle Scholar
Inbar, M., Schick, A.(1979). Bedload transport associated with high stream power Jordan River, Israel. Proceedings of the National Academy of Sciences of the United States of America, 76, 25152517.CrossRefGoogle Scholar
Korup, O., Strom, A.L., Weidinger, J.T.(2006). Fluvial response to large rock-slope failures: examples from the Himalayas, the Tien shan, and the southern Alps in new Zealand. Geomorphology, 78, 321.Google Scholar
Lane, E.W. (1947). Report of the subcommittee on sediment terminology. Transactions-American Geophysical Union, 28, 936938.Google Scholar
Lane, E.W., Borland, W.M.(1951). Estimating bed load. Transactions of the American Geophysical Union, 32, 121123.Google Scholar
Lenzi, M.A., Mao, L., Comiti, F.(2003). Interannual variation of suspended sediment load and sediment yield in an alpine catchment. Hydrological Sciences Journal, 48, 899915.Google Scholar
Leopold, L.B., Emmett, W.W.(1976). Bedload Measurements, East Fork River, Wyoming. Proceedings of the National Academy of Sciences of the United States of America, 73, 10001004.Google Scholar
Loso, M.G., Anderson, R.S., Anderson, S.P.(2004). Post-Little Ice Age record of coarse and fine clastic sedimentation in an Alaskan proglacial lake. Geology, 32, 10651068.CrossRefGoogle Scholar
Milliman, J.D., Syvitski, J.P.M.(1992). Geomorphic tectonic control of sediment discharge to the ocean—the importance of small mountainous rivers. Journal of Geology, 100, 525544.Google Scholar
Nepal, and Finland, (2001). Topographic map of Nepal. His Majesty's Government of Nepal and Government of Finland. Kathmandu, Nepal..Google Scholar
Owen, L.A., Derbyshire, E., Fort, M.(1998). The Quaternary glacial history of the Himalaya; a review. Owen, L.A.. Mountain Glaciation. Quaternary Research Association, Cambridge., 91120.Google Scholar
Pratt, B.A., Burbank, D.W., Putkonen, J., Ojha, T.P.(2002). Climate implications of modern and paleo ELA's in the central Nepal Himalaya. Eos Transactions AGU. F319 Google Scholar
Pratt-Sitaula, B.A., Burbank, D.W., Heimsath, A., Putkonen, J.(2003). Significant glacial advance during Younger Dryas, Annapurna region, Nepal. Eos Transactions AGU, 84, (Abstract C11B-0817)Google Scholar
Raymo, M.E., Ruddiman, W.F.(1992). Tectonic forcing of late Cenozoic climate. Nature, 359, 117122.Google Scholar
Reid, L.M., Dunne, T.(1996). Rapid Evaluation of Sedimentary Budgets. Catena, Reiskirchen, Germany.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E.(2004). IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon, 46, 10291058.Google Scholar
Searle, M.P., Godin, L.(2003). The South Tibetan Detachment and the Manaslu Leucogranite: a structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. Journal of Geology, 111, 505523.Google Scholar
Shroder, J.F., Bishop, M.P.(1998). Mass movement in the Himalaya: new insights and research directions. Geomorphology, 26, 1335.Google Scholar
Sklar, L., Dietrich, W.E.(2001). Sediment and rock strength controls on river incision into bedrock. Geology, 29, 10871090.2.0.CO;2>CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J.(1993). Extended 14C Data-Base and Revised Calib 3.0 14C Age Calibration Program. Radiocarbon, 35, 215230.CrossRefGoogle Scholar
Subramanian, V., Ramanathan, A.L.(1996). Nature of sediment load in the Ganges–Brahmaputra River systems in India. Coastal Systems and Continental Margins, 2, 151168.CrossRefGoogle Scholar
Thompson, L.G., Yao, Y., Davis, M.E., Henderson, K.A., Mosley-Thompson, E., Lin, P.N., Beer, J., Synal, H.A., Cole-Dai, J., Bolzan, J.F.(1997). Tropical climate instability; the last glacial cycle from a Qinghai–Tibetan ice core. Science, 276, 18211825.Google Scholar
Vanoni, V.A. (1975). Sedimentation engineering. Manuals and Reports on Engineering Practice. American Society of Civil Engineers, New York.Google Scholar
Weidinger, J.T. (2006). Predesign, failure and displacement mechanisms of large rockslides in the Annapurna Himalayas, Nepal. Engineering Geology, 83, 201216.Google Scholar
Weidinger, J.T., Ibetsberger, H.J.(2000). Landslide dams of Tal, Latamrang, Ghatta Khola, Ringmo, and Darbang in the Nepal Himalayas and related hazards. Journal of Nepal Geological Society, 22, 371380.Google Scholar
Whipple, K.X., Kirby, E., Brocklehurst, S.H.(1999). Geomorphic limits to climate-induced increases in topographic relief. Nature, 401, 3943.Google Scholar
Whipple, K.X., Snyder, N.P., Dollenmayer, K.(2000). Rates and processes of bedrock incision by the upper Ukak River since the 1912 Novarupta ash flow in the Valley of Ten Thousand Smokes, Alaska. Geology, 28, 835838.Google Scholar
Willett, S.D. (1999). Orogeny and orography; the effects of erosion on the structure of mountain belts.. Journal of Geophysical Research, B, Solid Earth and Planets, 104, 28,95728,982.Google Scholar