Skip to main content Accessibility help

Climatic Implications of Macro- and Microfossil Assemblages from Late Pleistocene Deposits in Northern New Zealand

  • John Ogden (a1), Rewi M. Newnham (a2), Jonathan G. Palmer (a3), Richard G. Serra (a1) and Neil D. Mitchell (a1)...

Twenty-two plant species were identified from leaves, fruits, or flowers, and 41 taxa from pollen, present in a macrofossil (leaf) layer in a peat swamp formed on Pleistocene dunes on the Aupouri Peninsula in northern New Zealand. Eight genera of gymnosperms are represented. With the exception of Lagarostrobos colensoi, all tree species abundant as macrofossils are also common as pollen. Macrofossils enabled the on-site flora to be compared with the regional flora, represented by the pollen rain. Studies on leaf decomposition rates indicate bias toward sclerophyllous species in the macrofossils. Identification to species level and treering data from preserved kauri logs allow quantitative comparisons with similar extant communities. Current climatic conditions at those analogue sites are cooler (2° to 3°C), cloudier (11%), and much wetter (85%) than those currently prevailing on the Aupouri Peninsula. Dendrochronological results also suggest that the far north of New Zealand had a cooler, cloudier, and wetter climate at the time the fossil leaf assemblage was formed. Radiocarbon dates from possibly contaminated samples suggest that a diverse mixed gymnosperm/angiosperm forest, dominated by kauri (Agathis australis), was present about (or sometime before) 41,00034,000 yr B.P., when the leaf layer was formed. Similar temperature reductions have been postulated for this period in New Zealand by other authors.

Hide All
Ahmed, M. (1984). “Ecological and Dendrochronological Studies on Agathis austraiis (Salisb.)-kauri.” Unpublished Ph.D. thesis, University of Auckland, Auckland, New Zealand.
Ahmed, M., and Ogden, J. (1985). Modern New Zealand tree-ring chronologies 111.Agathis australis (salisb.)-kauri. Tree Ring Bulletin 45, 1124.
Ahmed, M., and Ogden, J. (1987). Population dynamics of the emergent conifer Agathis australis (D. Don.) Lindl. (kauri) in New Zealand. 1. Population structures and tree growth rates in mature stands. New Zealand Journal of Botany 25, 217229.
Ahmed, M., and Ogden, J. (1991). Descriptions of some mature Kauri forests of New Zealand. Tane 33 (in press).
Allan, H. H. (1961). “Flora of New Zealand” Vol. 1. Wellington, Government Printer.
Bieleski, R. L. (1959). Factors affecting the growth and distribution of kauri (Agathis australis Salisb.). Australian Journal of Botany 7, 252294.
Birks, H. H. (1973). Modern macrofossil assemblages in lake sediments in Minnesota. In “Quaternary Plant Ecology” (Birks, H. J. and West, R. G., Eds.), pp. 173189. Blackwell, Oxford, England.
Bowler, J. M. Hope, G. S. Jennings, J. N. Singh, G., and Walker, D. (1976). Late Quaternary climates of Australia and New Guinea. Quaternary Research 6, 359395.
Bridge, M., and Ogden, J. (1986). A sub-fossil kauri (Agathis australis) tree-ring chronology. Journal of the Royal Society of New Zealand 16, 1723.
Brothers, R. N. (1954). A physiographic study of recent sand dunes of the Auckland west coast. New Zealand Geographer 10, 4759.
Chandler, M. E. J. (1964). “The Lower Tertiary Floras of Southern England. 4. A Summary and Survey of Findings in the Light of Re-cent Botanical Observations.” British Museum (Natural History), London, pp. 151.
Chappell, J. (1970). Quaternary geology of the southwest Auckland coastal region. Transactions of the Royal Society of New Zealand; Earth Sciences 8, 133153.
Clarkson, B. R. Patel, R. N., and Clarkson, B. D. (1988). Composition and structure of forest overwhelmed at Pureora, central North Island, New Zealand, during the Taupo eruption (c. AD 130). Journal of the Royal Society of New Zealand 18, 417436.
Connor, H. E., and Edgar, E. (1987). Name changes in the indigenous New Zealand flora, 1960-1986 and NominaNova4, 1983-1986. New Zealand Journal of Botany 25, 115170.
Cranwell, L. M., and Moore, L. B. (1936). The occurrence of kauri in montane forest on Te Moehau. New Zealand Journal of Science and Technology 18, 531543.
Dick, R. S. (1950). “The Plant Geography of the ‘Far North’ of New Zealand.” Unpublished M.Sc thesis, University of Auckland.
Drake, H., and Burrows, C. J. (1980). The influx of potential macro-fossils into Lady Lake, north Westland, New Zealand. New Zealand Journal of Botany 18, 257274.
Dunwiddie, P. W. (1986). A 6000-year record of forest history on Mount Ranier, Washington. Ecology 67, 5868.
Dunwiddie, P. W. (1987). Macrofossil and pollen representation in coniferous trees in modern sediments from Washington. Ecology 68, 111.
Enright, N. J., and Ogden, J. (1987). Decomposition of litter from common woody species of kauri (Agathis australis Salisb.) forest in northern New Zealand. Australian Journal of Ecology 12, 109124.
Faegri, K., and Iversen, J. (1964). “Textbook of Pollen Analysis,” 1st ed. Blackwell, London.
Ferguson, D. K. (1985). The origin of leaf-assemblages. New light on an old problem. Review of Paleobotany and Palynology 46, 117188.
Gosz, J. R. Lickens, G. E., and Bormann, F. H. (1973). Nutrient re-lease from decomposing leaf and branch litter in the Hubbard Brook forest, New Hampshire. Ecological Monographs 43, 173191.
Hicks, D. L. (1975). “Geomorphic Development of the Southern Aup-ouri and Karikari Peninsulas with Special Reference to Sand Dunes.” Unpublished M.Sc. thesis, University of Auckland, New Zealand.
Jacobson, G. L. Jr., and Bradshaw, R. H. W. (1981). The selection of sites for paleovegetational studies. Quaternary Research 16, 8097.
Rear, D., and Hay, R. F. (1961). “Geological Map of New Zealand. 1:250,000.” Sheet 1, North Cape. New Zealand Geological Survey.
Kershaw, A. P. (1976). A Late Pleistocene and Holocene pollen diagram from Lynch’s Crater, north-eastern Queensland, Australia. New Phytologist 11, 469498.
Kershaw, A. P. (1978). Record of last interglacial-glacial cycle from north-eastern Queensland. Nature 272, 159161.
Kershaw, A. P., and Nix, H. A. (1988). Quantitative palaeoclimatic estimates from pollen data using bioclimatic profiles of extant taxa. Journal of Biogeography 15, 589602.
Lintott, W. H., and Burrows, C. J. (1973). A pollen diagram and mac-rofossils from Kettlehole bog, Cass, South Island, New Zealand. New Zealand Journal of Botany 11, 269282.
Macphail, M. K., and McQueen, D. R. (1983). The value of New Zealand pollen and spores as indicators of Cenozoic climates. Tuat-ara 26, 3759.
McGlone, M. S. (1988). New Zealand. In “Vegetation History” (Huntley, B. and Webb, T., Eds.), pp. 557599. Kluwer Academic, Norwell, MA.
McGlone, M. S., and Topping, W. W. (1983). Late Quaternary vegetation, Tongariro Region, Central North Island, New Zealand. New Zealand Journal of Botany 21, 5376.
McGlone, M. S. Howarth, R., and Pullar, W. A. (1984). Late Pleistocene stratigraphy, vegetation and climate of the Bay of Plenty and Gisbourne regions, New Zealand. New Zealand Journal of Geology and Geophysics 27, 327350.
McLean, R. F. Enright, N. J. Mitchell, N. D., and Braggins, J. E. (1985). “Wetlands and Heathlands of the Te Paki Region.” Report to the New Zealand Department of Lands and Survey. Department of Geography, University of Auckland.
McQueen, D. R. (1969). Macroscopic plant remains in recent lake sediments. Tuatara 17, 1319.
Millener, P. R. (1981). “The Quaternary avifauna of the North Island of New Zealand.” Unpublished Ph.D. thesis. University of Auckland.
Mitchell, N. D. (1991). The derivation of climate surfaces for New Zealand, and their application to the bioclimatic analysis of the dis-tribution of kauri (Agathis australis). Journal of the Royal Society of New Zealand 21, 1324.
Moir, R. W. Collen, B., and Thompson, C. S. (1986). The climate and weather of Northland. New Zealand Meteorological Service miscellaneous publication 115 (2).
Moore, L. B. (1973). Botanical notes on three high peaks overlooking the Hauraki Gulf. Tane 19, 213220.
Moore, L. B., and Edgar, E. (1970). “Flora of New Zealand,” Vol. 2. Government Printer, Wellington.
Mueller-Dombois, D., and Ellenberg, H. (1974). “Aims and Methods of Vegetation Ecology.” Wiley, New York.
New Zealand Meteorological Service (1981). “Summaries of Climato-logical Observations to 1980.” Government Printer, Wellington.
Newnham, R. M. (1990). “Late Quaternary Palynological Investiga-tions into the History of Vegetation and Climate in Northern New Zealand.” Unpublished Ph.D. thesis, University of Auckland, Auck-land, New Zealand.
Newnham, R. M. Ogden, J., and Mildenhall, D. C. (1993). A vegetation history of the Far North of New Zealand during the Late Otira (Last) Glaciation. Quaternary Research (in press).
Nix, H. A. (1986). A biogeographic analysis of Australian Elapid snakes. In “Atlas of Elapid Snakes of Australia” (Longmore, R., Ed.), pp. 415. Australian Government Publishing Service, Canberra.
Ogden, J. (1983). The scientific reserves of Auckland University. Quantitative vegetation studies. Tane 29, 163180.
Ogden, J., and Ahmed, M. (1989). Climate response function analyses of kauri (Agathis australis) tree-ring chronologies in northern New Zealand. Journal of the Royal Society of New Zealand 19, 205221.
Ogden, J., and Powell, J. (1979). A quantitative description of the forest vegetation on an altitudinal gradient in the Mount Field National Park, Tasmania, and a discussion of its history and dynamics. Australian Journal of Ecology 4, 293325.
Ogden, J. Wilson, A. Hendy, C Hogg, A., and Newnham, R. M. (1993). The Late Quaternary history of kauri (Agathis australis) in New Zealand and its climatic implications. Journal of Biogeography (in press).
Pocknall, D. T. (1978). Relative pollen representation in relation to vegetation composition, westland, New Zealand. New Zealand Journal of Botany 16, 379386.
Pocknall, D. T. (1980). Modern pollen rain and Aranuian vegetation from Lady Lake, north Westland, New Zealand. New Zealand Journal of Botany 18, 275284.
Polach, H. A. (1976). Radiocarbon dating as a research tool in archaeology—hopes and limitations. In “The Proceedings of a Symposium on Scientific Methods of Research in the Study of Ancient Chinese Bronzes and Southeast Asian Metal and Other Archaeological Artifacts” (Barnard, N., Ed.). pp. 467. National Gallery of Victoria, Melbourne.
Randall, P. (1990). “Pollen dispersal across the Southern Alps, South Island, New Zealand.” Unpublished M.Sc. thesis, University of Canterbury, New Zealand.
Richardson, R. J. H. (1975). “The Quaternary Geology of the North Kaipara Barrier.” Unpublished M.Sc. thesis, University of Auck-land.
Ricketts, B. D. (1979). Petrology and provenance of Pleistocene deposits in the south Parengrenga-Te Kao district, northern New Zealand. New Zealand Journal of Geology and Geophysics 22, 2127.
Singh, G. Kershaw, A. P., and Clark, R. (1981). Quantitative vegetation and fire history in Australia. In “Fire and the Australian Biota” (Gill, A. M. Groves, R. A., and Noble, I. R., Eds.), pp. 2354. Australian Academy of Science, Canberra.
Watts, W. A. (1967). Late-glacial plant macrofossils from Minnesota. In “Quaternary Paleoecology” (Cushing, E. J. and Wright, H. E., Eds.), pp. 8997. Yale Univ. Press, New Haven, CT.
Watts, W. A. (1973). Rates of change and stability in vegetation in the perspective of long periods of time. In “Quaternary Plant Ecology” (Birks, H. J. B. and West, R. G., Eds.), pp. 195206. Blackwell Scientific, Oxford.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quaternary Research
  • ISSN: 0033-5894
  • EISSN: 1096-0287
  • URL: /core/journals/quaternary-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed