Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T19:01:54.570Z Has data issue: false hasContentIssue false

Decadal- to centennial-scale climate changes over the last 2000 yr recorded from varved sediments of Lake Kusai, northern Qinghai-Tibetan Plateau

Published online by Cambridge University Press:  15 May 2019

Weihan Jia
Affiliation:
College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
Xingqi Liu*
Affiliation:
College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
*
*Corresponding author e-mail address: xqliu@cnu.edu.cn (X. Liu).

Abstract

High-resolution climate archives of the Late Holocene are essential in the study of paleoclimatic dynamics and for understanding the importance of natural and anthropogenic influences on past and future climate changes. Here, we present well-dated X-ray fluorescence scanning records retrieved from a varved sediment core from Lake Kusai. These records show the decadal- to centennial-scale paleoclimatic variability of the northern Qinghai-Tibetan Plateau over the last 2000 yr. Ca is mainly related to the precipitation of authigenic carbonates and is a proxy for temperature changes. The Ca record of Lake Kusai is well-correlated with the variations and periodicities of solar activity. Therefore, solar output can be suggested as being the predominant forcing mechanism of decadal- to centennial-scale temperature fluctuations over the last 2000 yr. The evolution of effective moisture was inferred from the log-ratios of Rb/Sr, which demonstrated synchronous changes with the typical Indian summer monsoon record from Dongge Cave. These results indicate that the decadal- to centennial-scale effective moisture evolution of the northern Qinghai-Tibetan Plateau is mainly influenced by the Indian summer monsoon. Additionally, we have not found the evident periodicities of solar activity in our effective moisture record over the last 2000 yr.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adolphi, F., Muscheler, R., Svensson, A., Aldahan, A., Possnert, G., Beer, J., Sjolte, J., Björck, S., Matthes, K., Thiéblemont, R., 2014. Persistent link between solar activity and Greenland climate during the Last Glacial Maximum. Nature Geoscience 7, 662666.Google Scholar
An, Z.S., Colman, S.M., Zhou, W.J., Li, X.Q., Brown, E.T., Jull, A.J.T., Cai, Y.J., et al. , 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Scientific Reports 2, 619.Google Scholar
An, Z.S., Kutzbach, J.E., Prell, W.L., Porter, S.C., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 6266.Google Scholar
Appleby, P.G., 2001. Chronostratigraphic Techniques in Recent Sediments. In: Last, W.M. and Smol, J.P. (Eds.), Tracking Environmental Change Using Lake Sediments. Volume 1: Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht, pp. 171203.Google Scholar
Appleby, P.G., Oldfieldz, F., 1983. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103, 2935.Google Scholar
Bard, E., Frank, M., 2006. Climate change and solar variability: What's new under the sun? Earth and Planetary Science Letters 248, 114.Google Scholar
Beer, J., Mende, W., Stellmacher, R., 2000. The role of the sun in climate forcing. Quaternary Science Reviews 19, 403415.Google Scholar
Berggren, A.M., Beer, J., Possnert, G., Aldahan, A., Kubik, P., Christl, M., Johnsen, S.J., Abreu, J., Vinther, B.M., 2009. A 600-year annual 10Be record from the NGRIP ice core, Greenland. Geophysical Research Letters 36, 431433.Google Scholar
Bird, B.W., Lei, Y.B., Perello, M., Polissar, P.J., Yao, T.D., Finney, B., Bain, D., Pompeani, D., Thompson, L.G., 2016. Late-Holocene Indian summer monsoon variability revealed from a 3300-year-long lake sediment record from Nir'pa Co, southeastern Tibet. Holocene 27, 112.Google Scholar
Bird, B.W., Polisar, P.J., Lei, Y.B., Thompson, L.G., Yao, T.D., Finney, B.P., Bain, D.J., Pompeani, D.P., Steinman, B.A., 2014. A Tibetan lake sediment record of Holocene Indian summer monsoon variability. Earth and Planetary Science Letters 399, 92102.Google Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.Google Scholar
Chen, Y., Liu, X.Q., He, L., Ye, L., Chen, H.F., Li, K., 2016. Micro-area analysis and mechanism of varves from Lake Kusai in the Hoh Xil area, northern Tibetan Plateau. [In Chinese with English abstract.] Acta Geologica Sinica 90, 10061015.Google Scholar
Cheng, H., Edwards, R.L., Sinha, A., Spötl, C., Yi, L., Chen, S.T., Kelly, M., et al. , 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640.Google Scholar
Cohen, A.S., 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, Oxford.Google Scholar
Conroy, J.L., Hudson, A.M., Overpeck, J.T., Liu, K.B., Wang, L., Cole, J.E., 2017. The primacy of multidecadal to centennial variability over late-Holocene forced change of the Asian Monsoon on the southern Tibetan Plateau. Earth and Planetary Science Letters 458, 337348.Google Scholar
Conroy, J.L., Thompson, D.M., Collins, A., Overpeck, J.T., Bush, M.B., Cole, J.E., 2014. Climate influences on water and sediment properties of Genovesa Crater Lake, Galápagos. Journal of Paleolimnology 52, 331347.Google Scholar
Croudace, I.W., Rindby, A., Rothwell, R.G., 2006. ITRAX: description and evaluation of a new multi-function X-ray core scanner. In: Rothwell, R.G. (Ed.), New Techniques in Sediment Core Analysis. Geological Society, London, pp. 5163.Google Scholar
Croudace, I.W., Rothwell, R.G., 2015. Micro-XRF Studies of Sediment Cores: Applications of a Non-Destructive Tool for the Environmental Sciences. Springer, Dordrecht.Google Scholar
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D.X., Cai, Y.J., Zhang, M.L., Lin, Y.S., Qing, J.M., An, Z.S., Revenaugh, J., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 7186.Google Scholar
Ekdahl, E.J., Fritz, S.C., Baker, P.A., Rigsby, C.A., Coley, K., 2008. Holocene multi-decadal to millennial-scale hydrologic variability on the South American Altiplano. Holocene 18, 867.Google Scholar
Fang, Z.Y., Zhu, F.K., Jiang, J.X., Qian, Z.A., 1997. Research of Dust-storm in China. [In Chinese.] Meteorological Press, Beijing.Google Scholar
Gasse, F., Arnold, M., Fontes, J.C., Fort, M., Gibert, E., Huc, A., Li, B., Li, Y., Liu, Q., Mélières, F., 1991. A 13,000-year climate record from western Tibet. Nature 353, 742745.Google Scholar
Ge, Q.S., Zheng, J.Y., Hao, Z.X., Liu, H.L., 2013. General characteristics of climate changes during the past 2000 years in China. Science in China Series D Earth Sciences 56, 321329.Google Scholar
Grießinger, J., Bräuning, A., Helle, G., Hochreuther, P., Schleser, G., 2017. Late Holocene relative humidity history on the southeastern Tibetan plateau inferred from a tree-ring δ 18O record: Recent decrease and conditions during the last 1500 years. Quaternary International 430, 5259.Google Scholar
Grinsted, A., Moore, J.C., Jevrejeva, S., 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics 11, 561566.Google Scholar
Haltia-Hovi, E., Saarinen, T., Kukkonen, M., 2007. A 2000-year record of solar forcing on varved lake sediment in eastern Finland. Quaternary Science Reviews 26, 678689.Google Scholar
Herzschuh, U., 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quaternary Science Reviews 25, 163178.Google Scholar
Herzschuh, U., Borkowski, J., Schewe, J., Mischke, S., Tian, F., 2014. Moisture-advection feedback supports strong early-to-mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 402, 4454.Google Scholar
Heymann, C., Nelle, O., Dörfler, W., Zagana, H., Nowaczyk, N., Xue, J.B., Unkel, I., 2013. Late Glacial to mid-Holocene palaeoclimate development of Southern Greece inferred from the sediment sequence of Lake Stymphalia (NE-Peloponnese). Quaternary International 302, 4260.Google Scholar
Hodell, D.A., Schelske, C.L., Fahnenstiel, G.L., Robbins, L.L., 1998. Biologically induced calcite and its isotopic composition in Lake Ontario. Limnology and Oceanography 43, 187199.Google Scholar
Hou, J.Z., D'Andrea, W.J., Liu, Z.H., 2012. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quaternary Science Reviews 48, 6779.Google Scholar
Huang, C.J., Tian, X.L., 2018. Discussion on the driving mechanism of solar activity to interannual-suborbital-scale climate change. [In Chinese with English abstract.] Quaternary Science 38, 12551267.Google Scholar
Kelts, K., Hsü, K.J., 1978. Freshwater Carbonate Sedimentation. In: Lerman, A. (Ed.), Lakes: Chemistry,Geology, Physics. Springer, New York, pp. 295323.Google Scholar
Koinig, K.A., Shotyk, W., Lotter, A.F., Ohlendorf, C., Sturm, M., 2003. 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake-the role of climate, vegetation, and land-use history. Journal of Paleolimnology 30, 307320.Google Scholar
Li, B.Y., 1996. Environment of Kekexili area, Qinghai Province. [In Chinese.] Science Press, Beijing.Google Scholar
Li, J.F., Liu, X.Q., 2018. Orbital- and suborbital-scale changes in the East Asian summer monsoon since the last deglaciation. Holocene 28, 12161224.Google Scholar
Li, K., Liu, X.Q., Wang, Y.B., Herzschuh, U., Ni, J., Liao, M.N., Xiao, X.Y., 2017. Late Holocene vegetation and climate change on the southeastern Tibetan Plateau: Implications for the Indian Summer Monsoon and links to the Indian Ocean Dipole. Quaternary Science Reviews 177, 235245.Google Scholar
Liu, J., Wang, B., Ding, Q.H., Kuang, X.Y., Willie, S., Eduardo, Z., 2009. Centennial variations of the global monsoon precipitation in the last millennium: Results from ECHO-G model. Journal of Climate 22, 23562371.Google Scholar
Liu, X.Q., Dong, H.L., Rech, J.A., Matsumoto, R., Bo, Y., Wang, Y.B., 2008a. Evolution of Chaka Salt Lake in NW China in response to climatic change during the Latest Pleistocene-Holocene. Quaternary Science Reviews 27, 867879.Google Scholar
Liu, X.Q., Dong, H.L., Yang, X.D., Herzschuh, U., Zhang, E.L., Stuut, J.B.W., Wang, Y.B., 2009. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau. Earth and Planetary Science Letters 280, 276284.Google Scholar
Liu, X.Q., Herzschuh, U., Shen, J., Jiang, Q.F., Xiao, X.Y., 2008b. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quaternary Research 70, 412425.Google Scholar
Liu, X.Q., Herzschuh, U., Wang, Y.B., Kuhn, G., Yu, Z.T., 2014a. Glacier fluctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records. Geophysical Research Letters 41, 62656273.Google Scholar
Liu, X.Q., Yu, Z.T., Dong, H.L., Chen, H.F., 2014b. A less or more dusty future in the Northern Qinghai-Tibetan Plateau? Scientific Reports 4, 6672.Google Scholar
Liu, Y., An, Z.S., Linderholm, H.W., Chen, D.L., Song, H.M., Cai, Q.F., Sun, J.Y., Hua, T., 2009. Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Science in China Series D Earth Sciences 52, 348359.Google Scholar
Löwemark, L., Chen, H.F., Yang, T.N., Kylander, M., Yu, E.F., Hsu, Y.W., Lee, T.Q., Song, S.R., Jarvis, S., 2011. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences 40, 12501256.Google Scholar
Mishra, P.K., Anoop, A., Schettler, G., Prasad, S., Jehangir, A., Menzel, P., Naumann, R., Yousuf, A.R., Basavaiah, N., Deenadayalan, K., 2015. Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya. Quaternary International 371, 7686.Google Scholar
Morrill, C., Overpeck, J.T., Cole, J.E., Liu, K.B., Shen, C., Tang, L., 2006. Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quaternary Research 65, 232243.Google Scholar
Oldfield, F., Appleby, P.G., 1984. Empirical testing of 210Pb-dating models for lake sediments. In: Haworth, E.Y., Lund, J.W.G. (Eds.), Lake Sediments and Environmental History. Leicester University Press, Leicester, pp. 93124.Google Scholar
Opitz, S., Wünnemann, B., Aichner, B., Dietze, E., Hartmann, K., Herzschuh, U., Ijmker, J., et al. , 2012. Late Glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 337–338, 159176.Google Scholar
Past Global Changes (PAGES), 2009. Past Global Changes: Science Plan and Implementation Strategy (IGBP Report No. 57). IGBP Secretariat, Stockholm.Google Scholar
Past Global Changes (PAGES) Hydro2k Consortium, 2017. Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Climate of the Past 13, 18511900.Google Scholar
Pennington, W., 1973. The recent sediments of Windermere. Freshwater Biology 3, 363382.Google Scholar
Ramisch, A., Lockot, G., Haberzettl, T., Hartmann, K., Kuhn, G., Lehmkuhl, F., Schimpf, S., et al. , 2016. A persistent northern boundary of Indian Summer Monsoon precipitation over Central Asia during the Holocene. Scientific Reports 6, 25791.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 51, 11111150.Google Scholar
Rothwell, R.G., Rack, F.R., 2006. New techniques in sediment core analysis: an introduction. In: Rothwell, R.G. (Ed.), New Techniques in Sediment Core Analysis. Special Publication, Vol. 267. Geological Society, London, pp. 129.Google Scholar
Saarni, S., Muschitiello, F., Weege, S., Brauer, A., Saarinen, T., 2016. A late Holocene record of solar-forced atmospheric blocking variability over Northern Europe inferred from varved lake sediments of Lake Kuninkaisenlampi. Quaternary Science Reviews 154, 100110.Google Scholar
Shao, X.M., Huang, L., Liu, H.B., Liang, E.Y., Fang, X.Q., Wang, L.L., 2005. Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai. Science in China Series D Earth Sciences 48, 939949.Google Scholar
Shen, J., Liu, X.Q., Wang, S.M., Matsumoto, R., 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International 136, 131140.Google Scholar
Steinhilber, F., Beer, J., Fröhlich, C., 2009. Total solar irradiance during the Holocene. Geophysical Research Letters 36, 308308.Google Scholar
Stuiver, M., 1998. INTCAL 98 radiocarbon age calibration 24,000 cal BP. Radiocarbon 40, 10411083.Google Scholar
Suess, H.E., 1980. The radiocarbon record in tree rings of the last 8000 years. Radiocarbon 22, 200209.Google Scholar
Tan, L.C., Cai, Y.J., An, Z.S., Edwards, R.L., Cheng, H., Shen, C.C., Zhang, H.W., 2010. Centennial to decadal-scale monsoon precipitation variability in the semi-humid region, northern China during the last 1860 years: Records from stalagmites in Huangye Cave. Holocene 21, 287296.Google Scholar
Tan, L.C., Cai, Y.J., Yi, L., An, Z.S., Ai, L., 2008. Precipitation variations of Longxi, northeast margin of Tibetan Plateau since AD 960 and their relationship with solar activity. Climate of the Past 20, 1928.Google Scholar
Thompson, L.G., Mosleythompson, E., Brecher, H., Davis, M., León, B., Les, D., Lin, P.N., Mashiotta, T., Mountain, K., 2006. Abrupt tropical climate change: Past and present. Proceedings of the National Academy of Sciences of the United States of America 103, 1053610543.Google Scholar
Thompson, L.G., Yao, T.D., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Lin, P.N., 2000. A high-resolution millennial record of the south asian monsoon from Himalayan ice cores. Science 289, 19161920.Google Scholar
Usoskin, I.G., Schüssler, M., Solanki, S.K., Mursula, K., 2005. Solar activity, cosmic rays, and Earth's temperature: A millennium-scale comparison. Journal of Geophysical Research 110, A10102.Google Scholar
Wagner, G., Beer, J., Masarik, J., Muscheler, R., Kubik, P.W., Mende, W., Laj, C., Raisbeck, G.M., Yiou, F., 2001. Presence of the Solar de Vries Cycle (~205 years) during the Last Ice Age. Geophysical Research Letters 28, 303306.Google Scholar
Wang, P.X., Wang, B., Cheng, H., Fasullo, J., Guo, Z., Kiefer, T., Liu, Z.Y., 2017. The global monsoon across time scales: Mechanisms and outstanding issues. Earth-Science Reviews 174, 84121.Google Scholar
Wang, S.M., Dou, H.S., 1998. Lakes in China. [In Chinese.] Science Press, Beijing.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski, C.A., Li, X.D., 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 308, 854857.Google Scholar
Weltje, G.J., Tjallingii, R., 2008. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth and Planetary Science Letters 274, 423438.Google Scholar
Wiles, G.C., D'Arrigo, R.D., Villalba, R., Calkin, P.E., Barclay, D.J., 2004. Century-scale solar variability and Alaskan temperature change over the past millennium. Geophysical Research Letters 31, 305316.Google Scholar
Xiao, J.L., Wu, J.T., Si, B., Liang, W.D., Nakamura, T., Liu, B.L., Inouchi, Y., 2006. Holocene climate changes in the monsoon/arid transition reflected by carbon concentration in Daihai Lake of Inner Mongolia. Holocene 16, 551560.Google Scholar
Yan, H., Soon, W., Wang, Y.H., 2015. A composite sea surface temperature record of the northern South China Sea for the past 2500 years: A unique look into seasonality and seasonal climate changes during warm and cold periods. Earth-Science Reviews 141, 122135.Google Scholar
Yang, B., Braeuning, A., Johnson, K.R., Shi, Y., 2002. General characteristics of temperature variation in China during the last two millennia. Geophysical Research Letters 29, 38-3138-34.Google Scholar
Yang, B., Braeuning, A., Shi, Y.F., 2003. Late Holocene temperature fluctuations on the Tibetan Plateau. Quaternary Science Reviews 22, 23352344.Google Scholar
Yang, B., Qin, C., Wang, J.L., He, M.H., Melvin, T.M., Osborn, T.J., Briffa, K.R., 2014. A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America 111, 29032908.Google Scholar
Yao, B., Liu, X.Q., Wang, Y.B., Yang, B., 2011. Late Holocene climatic changes revealed by mineralogical records from lacustrine core KS-2006 from Lake Kusai in the Hoh Xil area, northern Tibetan Plateau. [In Chinese with English abstract.] Journal of Lake Sciences 23, 903909.Google Scholar
Yao, T.D., Masson-Delmotte, V., Gao, J., Yu, W.S., Yang, X.X., Risi, C., Sturm, C., et al. , 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Reviews of Geophysics 51, 525548.Google Scholar
Yao, T.D., Thompson, L.G., Qing, D.H., Tian, L.D., Jiao, K.Q., Yang, Z.H., Xie, C., 1996. Variations in temperature and precipitation in the past 2000 a on the Xizang (Tibet) Plateau-Guliya ice core record. Science in China Series D Earth Sciences 39, 425433.Google Scholar
Zhang, P.Z., Cheng, H., Edwards, R.L., Chen, F.H., Wang, Y.J., Yang, X.L., Liu, J., et al. , 2008. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322, 940942.Google Scholar
Zhao, P., Zhou, X.J., Liu, G., 2011. Decadal-centennial-scale change in Asian-Pacific summer thermal contrast and solar activity. Chinese Science Bulletin 56, 30123018.Google Scholar
Zhu, L.P., Wu, Y.H., Wang, J.B., Xiao, L., Ju, J.T., Xie, M.P., Li, M.H., Mäusbacher, R., Schwalb, A., Daut, G., 2008. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. Holocene 18, 831839.Google Scholar
Zolitschka, B., Francus, P., Ojala, A.E.K., Schimmelmann, A., 2015. Varves in lake sediments—A review. Quaternary Science Reviews 117, 141.Google Scholar