Skip to main content
×
×
Home

Directly dating postglacial Greenlandic land-surface emergence at high resolution using in situ 10Be

  • Paul R. Bierman (a1), Dylan H. Rood (a2) (a3), Jeremy D. Shakun (a4), Eric W. Portenga (a5) and Lee B. Corbett (a1)...
Abstract

Postglacial emergence curves are used to infer mantle rheology, delimit ice extent, and test models of the solid Earth response to changing ice and water loads. Such curves are rarely produced by direct dating of land emergence; rather, most rely on the presence of radiocarbon-datable organic material and inferences made between the age of sedimentary deposits and landforms indicative of former sea level. Here, we demonstrate a new approach, 10Be dating, to determine rates of postglacial land emergence in two different settings. In southern Greenland (Narsarsuaq/Igaliku), we date directly the exposure, as relative sea level fell, of gravel beaches and rocky outcrops allowing determination of rapid, post–Younger Dryas emergence. In western Greenland (Kangerlussuaq), we constrain Holocene isostatic response by dating the sequential stripping of terrace sediment driven by land-surface uplift, relative sea-level fall, and resulting fluvial incision. The technique we employ provides high temporal and elevation resolution important for quantifying rapid emergence immediately after deglaciation and less rapid uplift during the middle Holocene. 10Be-constrained emergence curves can improve knowledge of relative sea-level change by dating land emergence along rocky coasts, at elevations and locations where radiocarbon-datable sediments are not present, and without the lag time needed for organic material to accumulate.

Copyright
Corresponding author
*Corresponding author at: Department of Geology, University of Vermont, Burlington, Vermont 05405, USA. E-mail address: pbierman@uvm.edu (P.R. Bierman).
References
Hide All
Andrews, J.T., 1987. Glaciation and sea level: a case study. In: Devoy, R.J.N. (Ed.), Sea Surface Studies: A Global View. Springer, Dordrecht, the Netherlands, pp. 95–126.
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A simple, internally consistent, and easily accessible means of calculating surface exposure ages and erosion rates from Be-10 and Al-26 measurements. Quaternary Geochronology 3, 174195.
Bennike, O., Björck, S., Lambeck, K., 2002. Estimates of South Greenland late-glacial ice limits from a new relative sea level curve. Earth and Planetary Science Letters 197, 171186.
Bennike, O., Wagner, B., Richter, A., 2011. Relative sea level changes during the Holocene in the Sisimiut area, south-western Greenland. Journal of Quaternary Science 26, 353361.
Bierman, P.R., Marsella, K.A., Patterson, C., Davis, P.T., Caffee, M., 1999. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: a multiple nuclide approach. Geomorphology 27, 2539.
Bierman, P.R., Shakun, J.D., Corbett, L.B., Zimmerman, S.R., Rood, D.H., 2016. A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years. Nature 540, 256260.
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., Stone, J., 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology 31, 188198.
Briner, J.P., Goehring, B.M., Mangerud, J., Svendsen, J.I., 2016. The deep accumulation of 10Be at Utsira, southwestern Norway: implications for cosmogenic nuclide exposure dating in peripheral ice sheet landscapes. Geophysical Research Letters 43, 91219129.
Briner, J.P., Gosse, J.C., Bierman, P.R., 2006. Applications of cosmogenic nuclides to Laurentide Ice Sheet history and dynamics. Geological Society of America Special Paper 415, 2941.
Briner, J.P., Stewart, H.A.M., Young, N.E., Philipps, W., Losee, S., 2010. Using proglacial-threshold lakes to constrain fluctuations of the Jakobshavn Isbræ ice margin, western Greenland, during the Holocene. Quaternary Science Reviews 29, 38613874.
Briner, J.P., Young, N.E., Goehring, B.M., Schaefer, J.M., 2012. Constraining Holocene 10Be production rates in Greenland. Journal of Quaternary Science 27, 26.
Carlson, A.E., Winsor, K., Ullman, D.J., Brook, E.J., Rood, D.H., Axford, Y., LeGrande, A.N., Anslow, F.S., Sinclair, G., 2014. Earliest Holocene south Greenland ice sheet retreat within its late Holocene extent. Geophysical Research Letters 41, 55145521.
Clark, J.A., 1976. Greenland’s rapid postglacial emergence: a result of ice-water gravitational attraction. Geology 4, 310312.
Clark, J.A., Farrell, W.E., Peltier, W.R., 1978. Global changes in postglacial sea level: a numerical calculation. Quaternary Research 9, 265287.
Corbett, L., Bierman, P., Graly, J., Neumann, T., Rood, D., 2013. Constraining landscape history and glacial erosivity using paired cosmogenic nuclides in Upernavik, northwest Greenland. Geological Society of America Bulletin 125, 10591062.
Corbett, L., Bierman, P.R., Rood, D.H., 2016a. Constraining multi-stage exposure-burial scenarios for boulders preserved beneath cold-based glacial ice in Thule, Northwest Greenland. Earth and Planetary Science Letters 440, 147157.
Corbett, L.B., Bierman, P.R., Neumann, T.A., Graly, J.A., 2016b. Stories from under the ice: investigating glacial history and process with cosmogenic nuclides in icebound cobbles. Geological Society of America Abstracts with Programs 48, 283374.
Corbett, L.B., Bierman, P.R., Rood, D.H., 2016c. An approach for optimizing in situ cosmogenic 10Be sample preparation. Quaternary Geochronology 33, 2434.
Davis, P.T., Davis, R.B., 1980. Interpretation of minimum-limiting radiocarbon dates for deglaciation of Mount Katahdin area, Maine. Geology 8, 396400.
Dutton, A., Carlson, A.E., Long, A.J., Milne, G.A., Clark, P.U., DeConto, R., Horton, B.P., Rahmstorf, S., Raymo, M.E., 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019.
Forman, S.L., Lubinski, D.J., Ingólfsson, Ó., Zeeberg, J.J., Snyder, J.A., Siegert, M.J., Matishov, G.G., 2004. A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia. Quaternary Science Reviews 23, 13911434.
Fredh, Daniel. Holocene relative sea-level changes in the Tasiusaq area, southern Greenland, with focus on the Ta4 basin. Master Thesis in Geology, Department of Geology, Lund University (2008). Available at: lup.lub.lu.se/student-papers/record/2334019/file/2334020.pdf (accessed February 2017).
Gomez, N., Mitrovica, J.X., Huybers, P., Clark, P.U., 2010. Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nature Geoscience 3, 850853.
Gosse, J., Hecht, G., Mehring, N., Klein, J., Lawn, B., Dyke, A., 1998. Comparison of radiocarbon- and in situ cosmogenic nuclide-derived postglacial emergence curves for Prescott Island, central Canadian Arctic. Geological Society of America Abstracts with Programs 30, 298.
Håkansson, L., Alexanderson, H., Hjort, C., Möller, P., Briner, J.P., Aldahan, A., Possnert, G., 2009. Late Pleistocene glacial history of Jameson Land, central East Greenland, derived from cosmogenic 10Be and 26Al exposure dating. Boreas 38, 244260.
Hallet, B., Putkonen, J., 1994. Surface dating of dynamic landforms: young boulders on aging moraines. Science 265, 937940.
Hunt, A.L., Larsen, J., Bierman, P., Petrucci, G.A., 2008. Investigation of factors that affect the sensitivity of accelerator mass spectrometry for cosmogenic 10Be and 26Al isotope analysis. Analytical Chemistry 80, 16561663.
Koester, A.J., Shakun, J.D., Bierman, P.R., Davis, P.T., Corbett, L.B., Braun, D., Zimmerman, S.R., 2017. Rapid thinning of the Laurentide Ice Sheet in coastal Maine, USA, during late Heinrich Stadial 1. Quaternary Science Reviews 163, 180192.
Lal, D., Peters, B., 1967. Cosmic ray produced radioactivity on the earth. In: Sitte, K. (Ed.), Handbuch der Physik. Springer-Verlag, New York, pp. 551612.
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America 111, 1529615303.
Larsen, N.K., Funder, S., Kjær, K.H., Kjeldsen, K.K., Knudsen, M.F., Linge, H., 2014. Rapid early Holocene ice retreat in West Greenland. Quaternary Science Reviews 92, 310323.
Lecavalier, B.S., Milne, G.A., Simpson, M.J.R., Wake, L., Huybrechts, P., Tarasov, L., Kjeldsen, K.K., et al., 2014. A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent. Quaternary Science Reviews 102, 5484.
Levy, L.B., Kelly, M.A., Howley, J.A., Virginia, R.A., 2012. Age of the Ørkendalen moraines, Kangerlussuaq, Greenland: constraints on the extent of the southwestern margin of the Greenland Ice Sheet during the Holocene. Quaternary Science Reviews 52, 15.
Long, A.J., Roberts, D.H., Simpson, M.J.R., Dawson, S., Milne, G.A., Huybrechts, P., 2008. Late Weichselian relative sea-level changes and ice sheet history in southeast Greenland. Earth and Planetary Science Letters 272, 818.
Long, A.J., Strzelecki, M.C., Lloyd, J.M., Bryant, C.L., 2012. Dating High Arctic Holocene relative sea level changes using juvenile articulated marine shells in raised beaches. Quaternary Science Reviews 48, 6166.
Long, A.J., Woodroffe, S.A., Dawson, S., Roberts, D.H., Bryant, C.L., 2009. Late Holocene relative sea level rise and the Neoglacial history of the Greenland ice sheet. Journal of Quaternary Science 24, 345359.
Long, A.J., Woodroffe, S.A., Roberts, D.H., Dawson, S., 2011. Isolation basins, sea-level changes and the Holocene history of the Greenland Ice Sheet. Quaternary Science Reviews 30, 37483768.
Massa, C., Perren, B.B., Gauthier, É., Bichet, V., Petit, C., Richard, H., 2012. A multiproxy evaluation of Holocene environmental change from Lake Igaliku, South Greenland. Journal of Paleolimnology 48, 241258.
Matmon, A., Crouvi, O., Enzel, Y., Bierman, P., Larsen, J., Porat, N., Amit, R., Caffee, M., 2003. Complex exposure histories of chert clasts in the late Pleistocene shorelines of Lake Lisan, southern Israel. Earth Surface Processes and Landforms 28, 493506.
Mauz, B., Vacchi, M., Green, A., Hoffmann, G., Cooper, A., 2015. Beachrock: a tool for reconstructing relative sea level in the far-field. Marine Geology 362, 116.
Nelson, A.H., Bierman, P.R., Shakun, J.D., Rood, D.H., 2014. Using in situ cosmogenic 10Be to identify the source of sediment leaving Greenland. Earth Surface Processes and Landforms 39, 10871100.
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 258, 403413.
Peltier, W., 2004. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences 32, 111149.
Randsalu, L., 2008. Holocene Relative Sea-Level Changes in the Tasiusaq Area, Southern Greenland, with Focus on the Ta1 and Ta3 Basins. Master’s thesis, Lund University, Lund, Sweden.
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.
Retelle, M., Bradley, R.S., Stuckenrath, R., 1989. Relative sea level chronology determined from raised marine sediments and coastal isolation basins, northeastern Ellesmere Island. Arctic and Alpine Research 21, 113125.
Roberts, D.H., Long, A.J., 2005. Streamlined bedrock terrain and fast ice flow, Jakobshavns Isbrae, West Greenland: implications for ice stream and ice sheet dynamics. Boreas 34, 2542.
Rood, D.H., Brown, T.A., Finkel, R.C., Guilderson, T.P., 2013. Poisson and non-Poisson uncertainty estimations of 10Be/9Be measurements at LLNL–CAMS. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 294, 426429.
Rood, D.H., Hall, S., Guilderson, T.P., Finkel, R.C., Brown, T.A., 2010. Challenges and opportunities in high-precision Be-10 measurements at CAMS. Nuclear Instruments and Methods in Physics. Research, Section B: Beam Interactions with Materials and Atoms 268, 730732.
Roy, K., Peltier, W., 2015. Glacial isostatic adjustment, relative sea level history and mantle viscosity: reconciling relative sea level model predictions for the US East coast with geological constraints. Geophysical Journal International 201, 11561181.
Schildgen, T.F., Purves, R.S., Phillips, W.M., 2002. Modeling effects of snow burial on cosmogenic exposure age dating, Cairngorm Mountains, Scotland, and Wind River Range, WY. EOS, Transactions, American Geophysical Union 83, F550.
Scott, E.M., Cook, G.T., Naysmith, P., 2016. Error and uncertainty in radiocarbon measurements. Radiocarbon 49, 427440.
Simpson, M.J.R., Milne, G.A., Huybrechts, P., Long, A.J., 2009. Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quaternary Science Reviews 28, 16311657.
Sinclair, G., Carlson, A.E., Mix, A.C., Lecavalier, B.S., Milne, G., Mathias, A., Buizert, C., DeConto, R., 2016. Diachronous retreat of the Greenland ice sheet during the last deglaciation. Quaternary Science Reviews 145, 243258.
Sparrenbom, C.J., Bennie, O., Bjorck, S., Lambeck, K., 2006a. Relative sea-level changes since 15000 cal. yr BP in the Nanortalik area, southern Greenland. Journal of Quaternary Science 21, 2948.
Sparrenbom, C.J., Bennike, O., Fredh, D., Randsalu-Wendrup, L., Zwartz, D., Ljung, K., Björck, S., Lambeck, K., 2013. Holocene relative sea-level changes in the inner Bredefjord area, southern Greenland. Quaternary Science Reviews 69, 107124.
Sparrenbom, C.J., Bennike, O., Björck, S., Lambeck, K., 2006b. Holocene relative sea-level changes in the Qaqortoq area, southern Greenland. Boreas 35, 171187.
Stern, J.V., Lisiecki, L.E., 2013. North Atlantic circulation and reservoir age changes over the past 41,000 years. Geophysical Research Letters 40, 36933697.
Stone, J., Lambeck, K., Fifield, L.K., Cresswell, R.G., Evans, J.M., 1995. A lateglacial age for the Main Rock Platform, SW Scotland. EOS, Transactions, American Geophysical Union 76, 685.
Storms, J.E.A., de Winter, I.L., Overeem, I., Drijkoningen, G.G., Lykke-Andersen, H., 2012. The Holocene sedimentary history of the Kangerlussuaq Fjord-valley fill, West Greenland. Quaternary Science Reviews 35, 2950.
Stuiver, M., 1969. Yale natural radiocarbon measurements IX. Radiocarbon 11, 545658.
Stuiver, M., Braziunas, T.F., 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35, 137189.
Stuiver, M., Reimer, P.J., 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.
Tamura, T., 2012. Beach ridges and prograded beach deposits as palaeoenvironment records. Earth-Science Reviews 114, 279297.
Taylor, E., Long, A., Kra, R.S., 1992. Radiocarbon After Four Decades: An Interdisciplinary Perspective. Springer-Verlag, New York.
Ten Brink, N.W., 1974. Glacio-isostasy: new data from West Greenland and geophysical implications. Geological Society of America Bulletin 85, 219228.
Thomas, E.K., Briner, J.P., Ryan-Henry, J.J., Huang, Y., 2016. A major increase in winter snowfall during the middle Holocene on western Greenland caused by reduced sea ice in Baffin Bay and the Labrador Sea. Geophysical Research Letters 43, 53025308.
Trull, T.W., Brown, E.T., Marty, B., Raisbeck, G.M., Yiou, F., 1995. Cosmogenic 10Be and 3He accumulation in Pleistocene beach terraces in Death Valley, California: implications for cosmic-ray exposure dating of young surfaces in hot climates. Chemical Geology 119, 191207.
van Tatenhove, F.G.M., van der Meer, J.J.M., 1996. Implications for deglaciation chronology from new AMS age determinations in central West Greenland. Quaternary Research 45, 245253.
Waelbroeck, C., Duplessy, J.-C., Michel, E., Labeyrie, L., Paillard, D., Duprat, J., 2001. The timing of the last deglaciation in North Atlantic climate records. Nature 412, 724727.
Wahr, J., van Dam, T., Larson, K., Francis, O., 2001. GPS measurements of vertical crustal motion in Greenland. Journal of Geophysical Research: Atmospheres 106, 3375533759.
Washburn, A.L., 1962. Radiocarbon-dated postglacial delevelling in Northeast Greenland and its implications. Arctic 15, 6673.
Weidick, A., 1993. Neoglacial change of ice cover and the related response of the Earth’s crust in West Greenland. Rapport Grønlands Geologiske Undersøgelse 159, 121126.
Weidick, A., Kelly, M., Bennike, O., 2004. Late Quaternary development of the southern sector of the Greenland Ice Sheet, with particular reference to the Qassimiut lobe. Boreas 33, 284299.
Weidick, A., Oerter, H., Reeh, N., Thomsen, H.H., Thorning, L., 1990. The recession of the Inland Ice margin during the Holocene climatic optimum in the Jakobshavn Isfjord area of West Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology 82, 389399.
Winsor, K., Carlson, A.E., Caffee, M.W., Rood, D.H., 2015. Rapid last-deglacial thinning and retreat of the marine-terminating southwestern Greenland ice sheet. Earth and Planetary Science Letters 426, 112.
Woodroffe, S.A., Long, A.J., Lecavalier, B.S., Milne, G.A., Bryant, C.L., 2014. Using relative sea-level data to constrain the deglacial and Holocene history of southern Greenland. Quaternary Science Reviews 92, 345356.
Young, N.E., Briner, J.P., 2015. Holocene evolution of the western Greenland Ice Sheet: assessing geophysical ice-sheet models with geological reconstructions of ice-margin change. Quaternary Science Reviews 114, 117.
Young, N.E., Schaefer, J.M., Briner, J.P., Goehring, B.M, 2013. A 10Be production-rate calibration for the Arctic. Journal of Quaternary Science 28, 515526.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quaternary Research
  • ISSN: 0033-5894
  • EISSN: 1096-0287
  • URL: /core/journals/quaternary-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed