Hostname: page-component-65b85459fc-5fwlf Total loading time: 0 Render date: 2025-10-16T11:13:09.330Z Has data issue: false hasContentIssue false

Disentangling local and regional factors for establishment of the magnetic paleoenvironmental proxy records derived from loess–paleosol sequence in Bulgaria

Published online by Cambridge University Press:  16 October 2025

Diana Jordanova*
Affiliation:
National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Sofia, Bulgaria
Neli Jordanova
Affiliation:
National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Sofia, Bulgaria
Daniel Ishlyamski
Affiliation:
National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Sofia, Bulgaria
Bozhurka Georgieva
Affiliation:
National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Sofia, Bulgaria
*
Corresponding author: Diana Jordanova; Email: diana_jordanova77@abv.bg

Abstract

Magnetic susceptibility variations in loess–paleosol successions are widely utilized proxy records for reconstructions of global climate change during the Pleistocene. Analysis of the role of local factors in the establishment of magnetic signatures is rarely addressed. This study compares magnetic records along several adjacent profiles exposed in three open quarries near Kaolinovo (NE Bulgaria). The effect of the position of the sampled locations in the local landscape on the magnetic enhancement is revealed by differences in the thickness and degree of pedogenic magnetic enhancement. The profile, situated in a local paleo-depression, revealed disturbed sedimentation and depletion in the magnetic susceptibility. At lateral distances of 2–3 km (between quarries) the magnetic records show firmly repeatable patterns. Magnetic, geochemical, and diffuse reflectance data demonstrate a trend of increasing content of pedogenic hematites towards older paleosols, while goethite has major contribution to dithionite extractable iron phases. A representative stacked record of magnetic susceptibility for the Kaolinovo site is established using the results from mineralogical analyses. Comparison of the stacked susceptibility record from Kaolinovo with other sites from Bulgaria reveal that loess–paleosol sequences preserve reliable and repeatable magnetic records of global climate change for the last three glacial–interglacial cycles.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Antoine, P., Rousseau, D.-D., Moine, O., Kunesch, S., Hatté, C., Lang, A., Tissoux, H., Zöller, L., 2009. Rapid and cyclic aeolian deposition during the last glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28, 29552973.10.1016/j.quascirev.2009.08.001CrossRefGoogle Scholar
Antoine, P., Lagroix, F., Jordanova, D., Jordanova, N., Lomax, J., Fuchs, M., Debret, M., et al., 2019. A remarkable late Saalian (MIS6) loess (dust) accumulation in the Lower Danube at Harletz (Bulgaria). Quaternary Science Reviews 207, 80100.10.1016/j.quascirev.2019.01.005CrossRefGoogle Scholar
Balescu, S., Jordanova, D., Brisson, L.F., Hardy, F., Huot, S., Lamothe, M., 2020. Luminescence chronology of the northeastern Bulgarian loess–paleosol sequences (Viatovo and Kaolinovo). Quaternary International 552, 1524.10.1016/j.quaint.2019.04.020CrossRefGoogle Scholar
Balsam, W., Ji, J., Chen, J., 2004. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth and Planetary Science Letters 223, 335348.10.1016/j.epsl.2004.04.023CrossRefGoogle Scholar
Barth, A.M., Clark, P.U., Bill, N.S., He, F., Pisias, N.G., 2018. Climate evolution across the Mid-Brunhes Transition. Climate of the Past 14, 20712087.10.5194/cp-14-2071-2018CrossRefGoogle Scholar
Bilardello, D., Banerjee, S.K., Volk, M.W.R., Soltis, J.A., Penn, R.L., 2020. Simulation of natural iron oxide alteration in soil: conversion of synthetic ferrihydrite to hematite without artificial dopants, observed with magnetic methods. Geochemistry, Geophysics, Geosystems 20, e2020GC00903. https://doi.org/10.1029/2020GC009037Google Scholar
Bonatotzky, T., Ottner, F., Erlendsson, E., Gísladóttir, G., 2021. Weathering of tephra and the formation of pedogenic minerals in young Andosols, South East Iceland. Catena 198, 105030. https://doi.org/10.1016/j.catena.2020.105030CrossRefGoogle Scholar
Buggle, B., Glaser, B., Zoller, L., Hambach, U., Marković, S., Glaser, I., Gerasimenko, N., 2008. Geochemical characterization and origin of southeastern and Eastern European loesses (Serbia, Romania, Ukraine). Quaternary Science Reviews 27, 10581075.10.1016/j.quascirev.2008.01.018CrossRefGoogle Scholar
Buggle, B., Hambach, U., Glaser, B., Gerasimenko, N., Marković, S., Glaser, I., Zoller, L., 2009. Stratigraphy, and spatial and temporal paleoclimatic trends in Southeastern/Eastern European loess–paleosol sequences. Quaternary International 196, 86106.CrossRefGoogle Scholar
Buggle, B., Hambach, U., Müller, K., Zöller, L., Marković, S.B., Glaser, B., 2014. Iron mineralogical proxies and Quaternary climate change in SE-European loess–paleosol sequences. Catena 117, 422.CrossRefGoogle Scholar
Cornell, R., Schwertmann, U., 2003. The Iron Oxides. Structure, Properties, Reactions, Occurrence and Uses. Weinheim, New York.10.1002/3527602097CrossRefGoogle Scholar
da Costa, G.M., Laurent, C.H., de Grave, E., Vandenberghe, R.E., 1996. A comprehensive Mossbauer study of highly-substituted aluminum maghemite. In: Dyar, M.D., McCammon, C., Schaefer, M.W. (Eds.), Mineral Spectroscopy: A Tribute to Roger G. Burns. The Geochemical Society, Special Publication No. 5, pp. 93104.Google Scholar
Dahlgren, R.A., Dragoo, J. P., Ugolini, F. C., 1997. Weathering of Mt. St. Helens Tephra under a Cryic-Udic Climatic Regime. Soil Science Society of America Journal 61, 15191525.10.2136/sssaj1997.03615995006100050032xCrossRefGoogle Scholar
Dearing, J.A., Hay, K.L., Baban, S.M.J., Huddleston, A.S., Wellington, E.M.H., Loveland, P.J., 1996. Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set. Geophysical Journal International 127, 728734.CrossRefGoogle Scholar
Deaton, B.C., Balsam, W.L., 1991. Visible spectroscopy—a rapid method for determining hematite and goethite concentration in geological materials. Journal of Sedimentary Petrology 61, 628632.10.1306/D4267794-2B26-11D7-8648000102C1865DCrossRefGoogle Scholar
Dekkers, M.J., 1989. Magnetic properties of natural goethite–I. Grain-size dependence of some low- and high-field related rockmagnetic parameters measured at room temperature. Geophysical Journal International 97, 323340.10.1111/j.1365-246X.1989.tb00504.xCrossRefGoogle Scholar
Dunlop, D.J., Özdemir, Ö., 1997. Rock Magnetism, Fundamentals and Frontiers. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511612794CrossRefGoogle Scholar
Evlogiev, Y., 2007. Evidence for the Aeolian origin of loess in the Danubian Plain. Geologica Balcanica 36 (3–4), 3139.CrossRefGoogle Scholar
Fenn, K., Millar, I.L., Bird, A., Veres, D., Wagner, D., 2025. Provenance of ate Pleistocene loess in central and eastern Europe: isotopic evidence for dominant local sediment sources. Scientific Reports 15, 1624. https://doi.org/10.1038/s41598-024-83698-5CrossRefGoogle Scholar
Fernandez, G., Giaccio, B, Costa, A, Monaco, L., Nomade, S., Albert, P., Pereira, A., et al., 2024. New constraints on the Middle–Late Pleistocene Campi Flegrei explosive activity and Mediterranean tephrostratigraphy (∼160 ka and 110–90 ka). Quaternary Science Reviews 331, 10862. https://doi.org/10.1016/j.quascirev.2024.108623CrossRefGoogle Scholar
Fitzsimmons, K.E., Marković, S.B., Hambach, U., 2012. Pleistocene environmental dynamics recorded in the loess of the middle and lower Danube basin. Quaternary Science Reviews 41, 104118. https://doi.org/10.1016/j.quascirev.2012.03.002CrossRefGoogle Scholar
Forster, T., Heller, F., Evans, M.E., Havlicek, P., 1996. Loess in the Czech Republic: magnetic properties and paleoclimate. Studia Geophysica et Geodaetica 40, 243261.CrossRefGoogle Scholar
Frank, U., Nowaczyk, N.R., 2008. Mineral magnetic properties of artificial samples systematically mixed from haematite and magnetite. Geophysical Journal International 175, 449-461.10.1111/j.1365-246X.2008.03821.xCrossRefGoogle Scholar
Galluzzi, G., Plaza, C., Priori, S., Giannetta, B., Zaccone, C., 2024. Soil organic matter dynamics and stability: climate vs. time. Science of the Total Environment 929, 172441. https://doi.org/10.1016/j.scitotenv.2024.172441CrossRefGoogle ScholarPubMed
Geiss, C.E., Moses, K.A., 2019. Variable effects of elevation on pedogenic enhancement observed in 12 elevation transects in the White Mountains, New Hampshire. American Geophysical Union, Fall Meeting 2019, abstract #GP42A-01. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/503175Google Scholar
Geiss, C.E., Egli, R., Zanner, C.W., 2008. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. Journal of Geophysical Research 113, B11102. https://doi.org/10.1029/2008JB005669CrossRefGoogle Scholar
Gendler, T.S., Shcherbakov, V.P., Dekkers, M.J., Gapeev, A.K., Gribov, S.K., McClelland, M., 2005. The lepidocrocite–maghemite reaction chain—I. Acquisition of chemical remanent magnetization by maghemite, its magnetic properties and thermal stability. Geophysical Journal International 160, 815832.10.1111/j.1365-246X.2005.02550.xCrossRefGoogle Scholar
Goossens, D., 2006. Aeolian deposition of dust over hills: the effect of dust grain size on the deposition pattern. Earth Surface Processes and Landforms 31, 762776.10.1002/esp.1272CrossRefGoogle Scholar
Guyodo, Y., Mostrom, A., Penn, L., Banerjee, S.K., 2003. From nanodots to nanorods: oriented aggregation and magnetic evolution of nanocrystalline goethite. Geophysical Research Letters 30, 1512. https://doi.org/10.1029/2003GL017021CrossRefGoogle Scholar
Haase, D., Fink, J., Haase, G., Ruske, R., Pécsi, M., Richter, H., Altermann, M., Jäger, K.-D., 2007. Loess in Europe—its spatial distribution based on a European Loess Map, 1:2,500,000. Quaternary Science Reviews 26, 13011312.10.1016/j.quascirev.2007.02.003CrossRefGoogle Scholar
Hanesch, M., Stanjek, H., Petersen, N., 2006. Thermomagnetic measurements of soil iron minerals: the role of organic carbon. Geophysical Journal International 165, 5361.10.1111/j.1365-246X.2006.02933.xCrossRefGoogle Scholar
Hodell, D.A., Crowhurst, S.J., Lourens, L., Margari, V., Nicolson, J., Rolfe, J.E., Skinner, L.C., et al., 2023. A 1.5-million-year record of orbital and millennial climate variability in the North Atlantic. Climate of the Past 19, 607636.10.5194/cp-19-607-2023CrossRefGoogle Scholar
Hrouda, F., 2011. Models of frequency-dependent susceptibility of rocks and soils revisited and broadened. Geophysical Journal International 187, 12591269.10.1111/j.1365-246X.2011.05227.xCrossRefGoogle Scholar
Jenny, H., 1941. Factors of Soil Formation: A System of Quantitative Pedology. Dover Publications, New York, 281 pp.Google Scholar
Ji, J., Balsam, W., Chen, J., Liu, L., 2002. Rapid and quantitative measurement of hematite and goethite in the Chinese loess–paleosol sequence by diffuse reflectance spectroscopy. Clays and Clay Minerals 50, 208216.10.1346/000986002760832801CrossRefGoogle Scholar
Jiang, Z., Liu, Q., Roberts, A.P., Barrón, V., Torrent, J., Zhang, Q., 2018. A new model for transformation of ferrihydrite to hematite in soils and sediments. Geology 46, 987990.Google Scholar
Jiang, Z., Liu, Q., Roberts, A. P., Dekkers, M. J., Barrón, V., Torrent, J., Li, S., 2022. The magnetic and color reflectance properties of hematite: from Earth to Mars. Reviews of Geophysics 60, e2020RG000698. https://doi.org/10.1029/2020RG000698CrossRefGoogle Scholar
Jordanova, D., Jordanova, N., 2024. Geochemical and mineral magnetic footprints of provenance, weathering and pedogenesis of loess and paleosols from North Bulgaria. Catena 243, 108131. https://doi.org/10.1016/j.catena.2024.108131CrossRefGoogle Scholar
Jordanova, D., Petersen, N., 1999. Paleoclimatic record from a loess–soil profile in northeastern Bulgaria—I. Rock magnetic properties. Geophysical Journal International 138, 520532.10.1046/j.1365-246X.1999.00874.xCrossRefGoogle Scholar
Jordanova, D., Hus, J., Geeraerts, R., 2007. Paleoclimatic implications of the magnetic record from loess/paleosol sequence Viatovo (NE Bulgaria). Geophysical Journal International, 171, 10361047.10.1111/j.1365-246X.2007.03576.xCrossRefGoogle Scholar
Jordanova, D., Hus, J., Evlogiev, J., Geeraerts, R., 2008. Paleomagnetism of the loess/paleosol sequence in Viatovo (NE Bulgaria) in the Danube basin. Physics of the Earth and Planetary Interiors 167, 7183.10.1016/j.pepi.2008.02.008CrossRefGoogle Scholar
Jordanova, D., Laag, C., Jordanova, N., Lagroix, F., Georgieva, B., Ishlyamski, D., Guyodo, Y., 2022a. A detailed magnetic record of Pleistocene climate and distal ash dispersal during the last 800 kyrs—The Suhia Kladenetz quarry loess–paleosol sequence near Pleven (Bulgaria). Global and Planetary Change 214, 103840. https://doi.org/10.1016/j.gloplacha.2022.103840CrossRefGoogle Scholar
Jordanova, D., Simon, Q., Balescu, S., Jordanova, N., Ishlyamski, D,, Georgieva, B., Bourlès, D.L., Duvivier, A., Cornu, S., 2022b. Environmental changes in southeastern Europe over the last 450 ka: magnetic and pedologic study of a loess–paleosol profile from Kaolinovo (Bulgaria). Quaternary Science Reviews 292, 107671. https://doi.org/10.1016/j.quascirev.2022.107671CrossRefGoogle Scholar
Koleva, E., Peneva, R., 1990. Climate Handbook. Precipitation in Bulgaria. Bulgarian Academy of Sciences, Sofia. [in Bulgarian]Google Scholar
Kjutchukova, M., 1983. Reference Book on Climate of Bulgaria. Volume III—Air Temperature, Soil Temperature, Frost. Nauka i Izkustvo, Sofia. [in Bulgarian]Google Scholar
Lehmkuhl, F., Nett, J.J., Potter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., et al., 2021. Loess landscapes of Europe—mapping, geomorphology, and zonal differentiation. Earth-Science Reviews 215, 103496. https://doi.org/10.1016/j.earscirev.2020.103496CrossRefGoogle Scholar
Leicher, N., Giaccio, B., Zanchetta, G., Wagner, B., Francke, A., Palladino, D.M., Sulpizio, R., Albert, P.G., E.L, Tomlinson., 2019. Central Mediterranean explosive volcanism and tephrochronology during the last 630 ka based on the sediment record from Lake Ohrid. Quaternary Science Reviews 226, 106021. https://doi.org/10.1016/j.quascirev.2019.106021CrossRefGoogle Scholar
Lisiecki, L.E., M.E, Raymo., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic ∂18O records. Paleoceanography 20, PA1003. https://doi.org/10.1029/2004PA001071Google Scholar
Liu, Q., Yu, Y., Torrent, J., Roberts, A.P., Pan, Y., Zhu, R., 2006. Characteristic low-temperature magnetic properties of aluminous goethite [α-(Fe, Al)OOH] explained. Journal of Geophysical Research: Solid Earth 111, B12S34. https://doi.org/10.1029/2006JB004560CrossRefGoogle Scholar
Liu, Q.S., Barrón, V., Torrent, J., Eeckhout, S.G., Deng, C.L., 2008. Magnetism of intermediate hydromaghemite in the transformation of 2-line ferrihydrite into hematite and its paleoenvironmental implications. Journal of Geophysical Research: Solid Earth 113, B01103. https://doi.org/10.1029/2007JB005207Google Scholar
Liu, Q., Roberts, A., Larrasoaña, J., Banerjee, S., Guyodo, Y., Tauxe, L., Oldfield, F., 2012. Environmental magnetism: principles and applications. Reviews of Geophysics 50, RG4002. https://doi.org/10.1029/2012RG000393CrossRefGoogle Scholar
Long, X.Y., Ji, J.F., Balsam, W., 2011. Rainfall-dependent transformations of iron oxides in a tropical saprolite transect of Hainan Island, South China: Spectral and magnetic measurements. Journal of Geophysical Research 116, F03015. https://doi.org/10.1029/2010JF001712CrossRefGoogle Scholar
Long, X.Y., Ji, J.F., Balsam, W., Barron, V., Torrent, J., 2015. Grain growth and transformation of pedogenic magnetic particles in red Ferralsols. Geophysical Research Letters 42: 57625770.10.1002/2015GL064678CrossRefGoogle Scholar
Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters 17, 159162.10.1029/GL017i002p00159CrossRefGoogle Scholar
Maher, B.A., 1988. Magnetic properties of some synthetic sub-micron magnetites. Geophysical Journal International 94, 8396.10.1111/j.1365-246X.1988.tb03429.xCrossRefGoogle Scholar
Maher, B., 1998. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Paleogeography, Paleoclimatology, Paleoecology 137, 2554.10.1016/S0031-0182(97)00103-XCrossRefGoogle Scholar
Maher, B.A., 2016. Paleoclimatic records of the loess/paleosol sequences of the Chinese Loess Plateau. Quaternary Science Reviews 154, 2384.CrossRefGoogle Scholar
Maher, B., Thompson, R., Zhou, L.-P., 1994. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: a new mineral magnetic approach. Earth and Planetary Science Letters 125, 462471.10.1016/0012-821X(94)90232-1CrossRefGoogle Scholar
Marković, S.B., Stevens, T., Kukla, G., Hambach, U., Fitzsimmons, K., Gibbard, P., Buggle, B., et al., 2015. Danube loess stratigraphy—towards a pan-European loess stratigraphic model. Earth-Science Reviews 148, 228258.CrossRefGoogle Scholar
Martin-Garcia, G.M., 2019. Oceanic impact on European climate changes during the Quaternary. Geosciences 9, 119. https://doi.org/10.3390/geosciences9030119CrossRefGoogle Scholar
Mehra, O.P., Jackson, M.L., 1960. Iron oxide removal from soils and clays by a dithionite citrate system buffered with sodium bicarbonate. Clays and Clay Minerals 7, 317327.Google Scholar
Melton, E.D., Swanner, E.D., Behrens, S., Schmidt, C., Kappler, A., 2014. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology 12, 797808.10.1038/nrmicro3347CrossRefGoogle ScholarPubMed
Monger, C., Bronnikova, M., 2025. Soil memory of bioclimatic changes in the northern Chihuahuan Desert, USA. Catena 254, 108944. https://doi.org/10.1016/j.catena.2025.108944CrossRefGoogle Scholar
Munsell Color (Firm), 2010. Munsell Soil Color Charts. Munsell Color, Grand Rapids, Michigan.Google Scholar
Muxworthy, A.R., Turney, J.N., Qi, L., Baker, E.B., Perkins, J.R., Abdulkarim, M.A., 2023. Interpreting high-temperature magnetic susceptibility data of natural systems. Frontiers in Earth Science 11, 1171200. https://doi.org/10.3389/feart.2023.1171200CrossRefGoogle Scholar
Necula, C., Dimofte, D., Panaiotu, C., 2015. Rock magnetism of a loess–paleosol sequence from the western Black Sea shore (Romania). Geophysical Journal International 202 17331748.10.1093/gji/ggv250CrossRefGoogle Scholar
Novothny, Á., Barta, G., Végh, T., Bradak, B., Surányi, G., Horváth, E., 2020. Correlation of drilling cores and the Paks brickyard key section at the area of Paks, Hungary. Quaternary International 552, 5061.10.1016/j.quaint.2019.09.012CrossRefGoogle Scholar
Obreht, I., Hambach, U., Veres, D., Zeeden, C., Bösken, J., Klasen, N., Brill, D., et al., 2017. Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for modern human dispersal. Scientific Reports 7, 5848. https://doi.org/10.1038/s41598-017-06285-xCrossRefGoogle ScholarPubMed
Özdemir, Ö., Dunlop, D.J., 1996. Thermoremanence and Neel temperature of goethite. Geophysical Research Letters 23, 921924.10.1029/96GL00904CrossRefGoogle Scholar
Palacios, D., Hughes, P.D., Sánchez-Goñi, M.F., García-Ruiz, J.M., Andrés, N., 2023. The terminations of the glacial cycles. In: Palacios, D., Hughes, P.D., García-Ruiz, J.M., Andrés, N. (Eds.), European Glacial Landscapes: Last Deglaciation. Elsevier, Amsterdam, pp. 1124.10.1016/B978-0-323-91899-2.00002-4CrossRefGoogle Scholar
Panaiotu, C.G., Panaiotu, C.E., Grama, A., Necula, C., 2001. Paleoclimatic record from a loess–paleosol profile in southeastern Romania. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 26, 893898.10.1016/S1464-1895(01)00138-7CrossRefGoogle Scholar
Parfitt, R.L., Childs, C.W., 1988. Estimation of forms of Fe and Al—a review, and analysis of contrasting soils by dissolution and Mossbauer methods. Australian Journal of Soil Research 26, 12114410.1071/SR9880121CrossRefGoogle Scholar
Past Interglacials Working Group of PAGES, 2016. Interglacials of the last 800,000 years. Reviews of Geophysics 54, 162219. https://doi.org/10.1002/2015RG000482CrossRefGoogle Scholar
Petersen, N., Bleil, U., 1982. Curie temperature. In: Beblo, M., Berktold, A., Bleil, U., Gebrande, H., Grauert, B., Haack, U., Haack, V., et al., Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology – New Series, Group 5 Geophysics, Volume 1 Angenheister: Physical Properties of Rocks. Springer Materials, Berlin.Google Scholar
Petrovský, E., Kapička, A., 2006. On determination of the Curie point from thermomagnetic curves. Journal of Geophysical Research: Solid Earth 111, B12S27. https://doi.org/10.1029/2006JB004507CrossRefGoogle Scholar
Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, 653657.10.1016/0277-3791(95)00047-XCrossRefGoogle Scholar
Rasmussen, C., Dahlgren, R.A., Southard, R.J., 2010. Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range, California, USA. Geoderma 154, 473485.10.1016/j.geoderma.2009.05.019CrossRefGoogle Scholar
Rennert, T., Dietel, J., Heilek, S., Dohrmann, R., Mansfeldt, T., 2021. Assessing poorly crystalline and mineral-organic species by extracting Al, Fe, Mn, and Si using (citrate-) ascorbate and oxalate. Geoderma 397, 115095. https://doi.org/10.1016/j.geoderma.2021.115095CrossRefGoogle Scholar
Roberts, A.P., Zhao, X., Heslop, D., Abrajevitch, A., Chen, Y.-H., Hu, P., Jiang, Z., Liu, Q., Pillans, B.J., 2020. Hematite (α-Fe2O3) quantification in sedimentary magnetism: limitations of existing proxies and ways forward. Geoscience Letters 7, 8. https://doi.org/10.1186/s40562-020-00157-5CrossRefGoogle Scholar
Rochette, P., Fillion, G., 1989. Field and temperature behaviour of remanence in synthetic goethite: paleomagnetic implications. Geophysical Research Letters 16, 851854.CrossRefGoogle Scholar
Rousseau, D.-D., Derbyshire, E., Antoine, P., Hatté, C., 2018. European loess records. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-409548-9.11136-4CrossRefGoogle Scholar
Sánchez Goñi, M.F., Extier, T., Polanco-Martínez, J.M., Zorzi, C., Rodrigues, T., Bahr, A., 2023. Moist and warm conditions in Eurasia during the last glacial of the Middle Pleistocene Transition. Nature Communications 14, 2700. https://doi.org/10.1038/s41467-023-38337-4CrossRefGoogle ScholarPubMed
Schaetzl, R., Anderson, A., 2009. Soils. Genesis and Geomorphology. Cambridge University Press, Cambridge, UK.Google Scholar
Scheinost, A., Chavernas, A., Barrón, V., Torrent, J., 1998. Use and limitations of second- derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantity Fe oxide minerals in soils. Clays and Clay Minerals 46, 528536.10.1346/CCMN.1998.0460506CrossRefGoogle Scholar
Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat – lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 105, 194202.10.1002/jpln.3591050303CrossRefGoogle Scholar
Schwertmann, U., 1988. Occurrence and formation of iron oxides in various pedoenvironments. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (Eds.), Iron in Soils and Clay Minerals. NATO ASI Series, serie C, vol. 217, pp. 26730810.1007/978-94-009-4007-9_11CrossRefGoogle Scholar
Schwertmann, U., Friedl, J., Stanjek, H., Schulze, D., 2000. The effect of clay minerals on the formation of goethite and hematite from ferrihydrite after 16 years’ ageing at 25°C and pH 4–7. Clay Minerals 35, 613623.10.1180/000985500547034CrossRefGoogle Scholar
Sima, A., Rousseau, D.D., Kageyama, M., Ramstein, G., Schulz, M., Balkanski, Y., Antoine, P., Dulac, F., Hatte, C., 2009. Imprint of North-Atlantic abrupt climate changes on western European loess deposits as viewed in a dust emission model. Quaternary Science Reviews 28, pp. 28512866.10.1016/j.quascirev.2009.07.016CrossRefGoogle Scholar
Sipos, P., Kovács, I., Tóth, A., Németh, P., Demény, A., 2025. Paragenetic relationship between ferromanganese and calcareous nodules in a hydromorphic toposequence. Geoderma 454, 117179. https://doi.org/10.1016/j.geoderma.2025.117179CrossRefGoogle Scholar
Solits, J.A., Feinberg, J.M., Gilber, B., Penn, R.L., 2016. Phase transformation and particle-mediated growth in the formation of hematite from 2-line ferrihydrite. Crystal Growth & Design 16, 922932.10.1021/acs.cgd.5b01471CrossRefGoogle Scholar
Stuut, J.-B., Smalley, I., O’Hara-Dhand, K., 2009. Aeolian dust in Europe: African sources and European deposits. Quaternary International 198, 234245.10.1016/j.quaint.2008.10.007CrossRefGoogle Scholar
Taylor, R.M., Maher, B.A., Self, P.G., 1987. Magnetite in soils: I. The synthesis of single-domain and superparamagnetic magnetite. Clay Minerals 22, 411422.10.1180/claymin.1987.022.4.05CrossRefGoogle Scholar
Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Springer Science+Business Media B.V., Dordrecht.10.1007/978-94-011-8036-8CrossRefGoogle Scholar
Tonov, C., Vangelova, V., Vangelov, D., 2016. Mineralogy and geochemistry of kaolin deposits in Senovo-Vetovo and Kaolinovo region and notions of their genesis. Annuaire de l’Universite de Sofia “St. Kliment Ohridski” Faculte de Geologie et Geographie Livre 1 – Geologie 104, 4364.Google Scholar
Torrent, J., Barrón, V., 2002. Diffuse reflectance spectroscopy of iron oxides. In: Somasundaran, P. (Ed.), Encyclopedia of Surface and Colloid Science 239–240, 14381446.Google Scholar
Torrent, J., Barrón, V., 2003. The visible diffuse reflectance spectrum in relation to the color and crystal properties of hematite. Clays and Clay Minerals 51, 309317.10.1346/CCMN.2003.0510307CrossRefGoogle Scholar
Torrent, J., Barrón, V., 2008. Diffuse reflectance spectroscopy. In: Ulery, A.L., Drees, R. (Eds.), Methods of Soil Analysis Part 5: Mineralogical Methods. Soil Science Society of America, pp. 367387.Google Scholar
Torrent, J., Liu, Q., Bloemendal, J., Barrón, V., 2007. Magnetic enhancement and iron oxides in the Upper Luochuan loess–paleosol sequence, Chinese Loess Plateau. Soil Science Society of America Journal 71, 15701578.10.2136/sssaj2006.0328CrossRefGoogle Scholar
Tourloukis, V., 2016. On the spatio-temporal distribution of Mediterranean Lower Paleolithic sites: a geoarchaeological perspective. In: Harvati, K., Roksandic, M. (Eds.), Paleoanthropology of the Balkans and Anatolia, Vertebrate Paleobiology and Paleo-anthropology. Springer Science+Business Media, Dordrecht, pp. 303323.10.1007/978-94-024-0874-4_18CrossRefGoogle Scholar
Újvári, G., Bernasconi, S. M., Stevens, T., Kele, S., Páll-Gergely, B., Surányi, G., Demény, A., 2021. Stadial–interstadial temperature and aridity variations in East Central Europe preceding the Last Glacial Maximum. Paleoceanography and Paleoclimatology 36, e2020PA004170. https://doi.org/10.1029/2020PA004170CrossRefGoogle Scholar
Vakhrameeva, P., Wulf, S., Koutsodendris, A., Tjallingii, R., Fletcher, W.J., Appelt, O., Ludwig, T., Knipping, M., Trieloff, M., Pross, J., 2019. Eastern Mediterranean volcanism during marine isotope stages 9 to 7e (335–235 ka): insights based on cryptotephra layers at Tenaghi Philippon, Greece. Journal of Volcanology and Geothermal Research 380, 3147.10.1016/j.jvolgeores.2019.05.016CrossRefGoogle Scholar
Xiong, L.-Y., Tang, G.-A., 2019. Loess Landform Inheritance: Modeling and Discovery. Springer Nature, Singapore.10.1007/978-981-13-6404-4CrossRefGoogle Scholar
Yang, L.W., Jia, J., 2021. Temperature dependence of pedogenic magnetic mineral formation in loess deposits. Quaternary International 580, 9599.10.1016/j.quaint.2021.01.022CrossRefGoogle Scholar
Yang, Q., Li, X., Han, Z., Wang, X., Zhao, W., Yi, S., Lu, H., 2022. DCB dissolution of iron oxides in aeolian dust deposits controlled by particle size rather than mineral species. Scientific Reports 12, 2786. https://doi.org/10.1038/s41598-022-06734-2CrossRefGoogle ScholarPubMed
Zhang, C., Paterson, G.A., Liu, Q., 2012. A new mechanism for the magnetic enhancement of hematite during heating: the role of clay minerals. Studia Geophysica et Geodaetica 56, 845860.10.1007/s11200-011-9018-4CrossRefGoogle Scholar
Zhao, J.-B., Ma, Y.-D., Lui, R., Luo, X.-Q., Shao, T.-J., 2018. Paleoclimatic and hydrological environments inferred by moisture indexes from the S4 paleosol section in the Xi’an region, China. Quaternary International 493, 127136.CrossRefGoogle Scholar
Zhou, Z., Zhang, Z., Zou, X., Zhang, K., Zhang, W., 2020. Quantifying wind erosion at landscape scale in a temperate grassland: non ignorable influence of topography. Geomorphology 370, 107401. https://doi.org/10.1016/j.geomorph.2020.107401CrossRefGoogle Scholar
Supplementary material: File

Jordanova et al. supplementary material

Jordanova et al. supplementary material
Download Jordanova et al. supplementary material(File)
File 1.1 MB