Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T12:19:14.069Z Has data issue: false hasContentIssue false

Characteristics and Possible Source of a 1479 A.D. Volcanic Ash Layer in a Greenland Ice Core

Published online by Cambridge University Press:  20 January 2017

R. Joseph Fiacco Jr.
Affiliation:
Glacier Research Group, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824
Julie M. Palais
Affiliation:
Glacier Research Group, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824 Office of Polar Programs, National Science Foundation, Washington, DC 20550
Mark S. Germani
Affiliation:
McCrone Associates, Westmont, Illinois 60559
Gregory A. Zielinski
Affiliation:
Glacier Research Group, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824
Paul A. Mayewski
Affiliation:
Glacier Research Group, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824

Abstract

A microparticle concentration peak in a GISP2 ice core contains volcanic glass shards of rhyolitic composition that correspond in age to the 1479-1480 A.D. Mt. St. Helens Wn eruption. These glass shards are compositionally similar to the Wn tephra and constitute 83% of the total particle population. The shards are very coarse-grained (up to 40 μm diameter), suggesting rapid transport from their source to Greenland. A major sulfate peak in the ice occurs approximately 4 months after deposition of the glass shards. This difference in depositional timing suggests primarily tropospheric transport of the ash and stratospheric transport of the sulfate aerosol. Large-scale climatic perturbations following this eruption were evidently negligible. Glaciochemical seasonal indicators suggest a late-fall to early-winter 1479 A.D. eruption.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beget, J. E. Reger, R. D. Pinney, D. Gillispie, T., and Campbell, K. (1991). Correlation of the Holocene Jarvis Creek, Tangle Lakes, Cantwell, and Hayes Tephras in south central and central Alaska. Quaternary Research 42, 301306.Google Scholar
Betzer, P. R. Carder, K. L. Duce, R. A. Merrill, J. T. Tindale, N. W. Uematsu, M. Costello, D. K. Young, R. W. Feely, R. A. Breland, J. A. Bernstein, R. E., and Greco, A. M. (1988). Long-range transport of giant mineral aerosol particles. Nature 336, 568571.CrossRefGoogle Scholar
Borchardt, G. A. Aruscavage, P. J., and Millard, H. T. Jr. (1972). Correlation of the Bishop Ash, a Pleistocene marker bed, using instrumental neutron activation analysis. Journal of Sedimentary Petrology 35, 174189.Google Scholar
Clausen, H. B.. and Hammer, C. U. (1988). The Laki and Tambora eruptions as revealed in Greenland ice cores from 11 locations. Annals of Glaciology 10, 1622.CrossRefGoogle Scholar
Crandell, D. R.. and Mullineaux, D. R. (1978). Potential hazards from future eruptions of Mount St. Helens volcano, Washington. U.S. Geological Survey Bulletin 1383-C.Google Scholar
Dansgaard, W. (1981). Ice core studies: Dating the past to find the future. Nature 290, 360361.CrossRefGoogle Scholar
Davidson, C. I. Santhanam, S. Fortmann, R. C, and Olson, M. P. (1985). Atmospheric transport and deposition of trace elements onto the Greenland Ice Sheet. Atmospheric Environment 19, 20652081.CrossRefGoogle Scholar
DeAngelis, M. Barkov, N. I., and Petrov, V. N. (1987). Aerosol concentrations over the last climatic cycle (160kyr) from an Antarctic ice core. Nature 325, 318321.CrossRefGoogle Scholar
Delmas, R. J. Legrand, M. Aristarain, A. J., and Zanolini, F. (1985). Volcanic deposits in Antarctic snow and ice. Journal of Geophysical Research 90, 12,90112,920.CrossRefGoogle Scholar
Devine, J. D. Sigurdsson, H. Davis, A. N., and Self, S. (1984). Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climatic effects. Journal of Geophysical Research 89, 63096325.CrossRefGoogle Scholar
Fiacco, R. J. (1991). “Microparticles as a Paleovolcanic Indicator in the 1989 GISP2 Firn and Ice Core.” Unpublished M.S. thesis, University of New Hampshire.Google Scholar
Germani, M. S., and Buseck, P. R. (1991). Evaluation of automated scanning electron microscopy for atmospheric particle analysis. Analytical Chemistry 63, 22322237.CrossRefGoogle Scholar
Hammer, C. U. (1980). Acidity of polar ice cores in relation to absolute dating, past volcanism, and radioechoes. Journal of Glaciology 25, 359372.CrossRefGoogle Scholar
Hammer, C. U. Clausen, H. B., and Dansgaard, W. (1981). Past volcanism and climate revealed by Greenland ice cores. Journal of Vol-canology and Geoihermal Research 11, 310.CrossRefGoogle Scholar
Hoblitt, R. P. Crandell, D. R., and Mullineaux, D. R. (1980). Mount St. Helens eruptive behavior during the past 1,500 yr. Geology 8, 555559.2.0.CO;2>CrossRefGoogle Scholar
Hodge, S. M. Wright, D. L. Bradley, J. A. Jacobel, R. W. Skou, N., and Vaughn, B. (1990). Determination of the surface and bed topography in central Greenland. Journal of Glaciology 36, 1730.CrossRefGoogle Scholar
Johnsen, S. J. Dansgaard, W. Clausen, H. B.,and Langway, C. C. Jr. (1972). Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature 235, 429434.CrossRefGoogle Scholar
Kyle, P. R., and Jezek, P. A. (1978). Compositions of three tephra layers from the Byrd Station ice core, Antarctica. Journal of Volcanol-ogy and Geothermal Research 4, 225232.CrossRefGoogle Scholar
Kyle, P. R. Jezek, P. A. Mosley-Thompson, E., and Thompson, L. G. (1981). Tephra layers in the Byrd Station ice core and the Dome C ice core, Antarctica and their climatic importance. Journal of Volcanol-ogy and Geothermal Research 11, 2939.CrossRefGoogle Scholar
Kyle, P. R. Palais, J. M., and Delmas, R. (1982). The volcanic record of Antarctic ice cores: Preliminary results and potential for future investigations. Annals of Glaciology 3, 172177.CrossRefGoogle Scholar
Laj, P. Drummey, S. M. Spencer, M. J. Palais, J. M., and Sigurdsson, H. (1990). Depletion of H2O2 in a Greenland ice core: implications for oxidation of volcanic SO2. Nature 346, 4548.CrossRefGoogle Scholar
Langway, C. C Clausen, H. B., and Hammer, C. U. (1988). An inter-hemispheric volcanic time-marker in ice cores from Greenland and Antarctica. Annals of Glaciology 10, 102108.CrossRefGoogle Scholar
Legrand, M., and Delmas, R. J. (1987). A 220-year continuous record of volcanic H2SO4 in the Antarctic ice sheet. Nature 327, 671676.CrossRefGoogle Scholar
Legrand, M., and Delmas, R. J. (1988). Formation of HCl in the Antarctic atmosphere. Journal of Geophysical Research, 93, 71537168.Google Scholar
Legrand, M. Petit, J. R., and Korotkevich, Y. S. (1987). B.C. conductivity of Antarctic ice in relation to its chemistry. Journal de Physique Colloque Cl, supplément au no 3, Tome 48, 605611.Google Scholar
Lyons, W. B. Mayewski, P. A. Spencer, M. J. Twickler, M. S., and Graedel, T. E. (1990). A northern hemisphere volcanic chemistry record (1869-1984) and climatic implications using a south Greenland ice core. Annals of Glaciology 14, 176182.CrossRefGoogle Scholar
Mayewski, P. A. Spencer, M. J. Twickler, M. S., and Whitlow, S. (1990). A glaciochemical survey of the Summit region, Greenland. Annals of Glaciology 14, 186190.CrossRefGoogle Scholar
Mayewski, P. A. Lyons, W. B. Spencer, M. J. Twickler, M. S. Dansgaard, W. Koci, B. Davidson, C. I., and Honrath, R. E. (1986). Sulfate and nitrate concentrations from a south Greenland ice core. Science 232, 975977.CrossRefGoogle ScholarPubMed
Metrich, N. Sigurdsson, H. Meyer, P. S., and Devine, J. D. (1991). The 1783 Lakagigar eruption in Iceland: geochemistry, CO2 and sulfur degassing. Contributions of Mineralogy and Petrology 107, 435447.CrossRefGoogle Scholar
Mullineaux, D. R. (1986). Summary of pre-1980 tephra-fall deposits erupted from Mount St. Helens, Washington State, USA. Bulletin of Volcanology 48, 1726.CrossRefGoogle Scholar
Newhall, C. G., and Self, S. (1982). The volcanic explosivity index (VEI): An estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research. 87, 12311238.CrossRefGoogle Scholar
Palais, J. M. Taylor, K. Mayewski, P. A., and Grootes, P. (1991). Volcanic ash from the 1362 A.D. Oraefajokull eruption (Iceland) in the Greenland Ice Sheet, Geophysical Research Letters 18, 12411244.CrossRefGoogle Scholar
Palais, J. M., and Sigurdsson, H. (1989). Petrologic evidence of volatile emissions from major historic and pre-historic volcanic eruptions. In “Understanding Climate Change.” (Berger, A. Dickinson, R. E., and Kidson, J. W., Eds.), pp. 3153. A.G.U, Monograph 52.Google Scholar
Palais, J. M. Kyle, P. R. Mcintosh, W. C, and Seward, D. (1988). Magmatic and phreatomagmatic volcanic activity at Mt. Takahe, West Antarctica, based on tephra layers in the Byrd ice core and field observations at Mt. Takahe. Journal of Volcanology and Geothermal Research 3S, 295317.CrossRefGoogle Scholar
Palais, J. M. Kyle, P. R. Mosley-Thompson, E., and Thomas, E. (1987). Correlation of a 3,200 year old tephra in ice cores from Vostok and South Pole Stations, Antarctica. Geophysical Research Letters 14, 804807.CrossRefGoogle Scholar
Pollack, J. B. Toon, O. B. Sagan, C. Summers, A. Baldwin, B., and Van Camp, W. (1976). Volcanic explosions and climatic change: A theoretical assessment. Journal of Geophysical Research 81, 10711083.CrossRefGoogle Scholar
Ram, M., and Gayley, R. I. (1991). Long-range transport of volcanic ash to the Greenland ice sheet. Nature 349, 401404.CrossRefGoogle Scholar
Rampino, M. R. Self, S., and Stother, R. B. (1988). Volcanic winters. Annual Review of Earth and Planetary Sciences 16, 7399.CrossRefGoogle Scholar
Sarna-Wojcicki, A. M. Shipley, S. Waitt, R. B. Dzurisin, D., and Wood, S. H. (1981). Areal distribution, thickness, mass, volume, and grain size of air-fall ash from the six major eruptions of 1980. In “The 1980 eruptions of Mount St. Helens, Washington” (Lipman, P. W. and Mullineaux, D. R., Eds.), pp. 577600. U.S. Geological Survey Professional Paper 1250.Google Scholar
Sear, C. B. Kelly, P. M. Jones, P. D., and Goodess, C. M. (1987). Global surface-temperature responses to major volcanic eruptions. Nature 330, 365367.CrossRefGoogle Scholar
Self, S. Rampino, M. R., and Barbera, J. J. (1981). The possible effects of large 19th and 20th century volcanic eruptions on zona! and hemispheric surface temperatures. Journal of Volcanology and Geother-mai Research 11, 4160.CrossRefGoogle Scholar
Shapiro, M. A.. Hampel, T. Krueger, A. J. (1987). The Arctic tropopause fold. Monthly Weather Review 115, 444454.2.0.CO;2>CrossRefGoogle Scholar
Shapiro, M. A. Schnell, R. C Parungo, F. P. Oltmans, S. J., and Bodhaine, B. A. (1984). El Chichon volcanic debris in an Arctic tropopause fold. Geophysical Research Letters 11, 421424.CrossRefGoogle Scholar
Shattuck, T. W. Germani, M. S., and Buseck, P. R. (1991). Multivariate statistics for large data sets: applications to individual aerosol particles. Analytical Chemistry 63, 26462656.CrossRefGoogle Scholar
Sigurdsson, H. Devine, J. D. Davis, A. N. (1985). The petrologic estimate of volcanic degassing. Jokull 35, 18.Google Scholar
Simkin, T. Seibert, L. McClelland, L. Nelson, W. G. Bridge, D. Newhall, C., and Latter, J. (1981). “Volcanoes of the World.” Hutch-inson Ross, Strandsburg, PA.Google Scholar
Smith, H. W. Okazaki, R., and Knowles, C. R. (1977). Electron mi-croprobe analysis of glass shards from tephra assigned to set W, Mount St. Helens, Washington, Quaternary Research 7, 207217.CrossRefGoogle Scholar
Yamaguchi, D. K. (1983). New tree-ring dates for recent eruptions of Mt. St. Helens. Quaternary Research 10, 246250.CrossRefGoogle Scholar
Yamaguchi, D. K. (1985). Tree-ring evidence for a two-year interval between recent prehistoric explosive eruptions of Mt. St. Helens. Geology 13, 554557.2.0.CO;2>CrossRefGoogle Scholar