Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-27T22:04:38.070Z Has data issue: false hasContentIssue false

Early to mid-Holocene lake high-stand sediments at Lake Donggi Cona, northeastern Tibetan Plateau, China

Published online by Cambridge University Press:  20 January 2017

Elisabeth Dietze*
Affiliation:
Institute of Geographical Sciences, Interdisciplinary Center of Ecosystem Dynamics of Central Asia (EDCA), Freie Universität Berlin, Berlin, Germany
Bernd Wünnemann
Affiliation:
Institute of Geographical Sciences, Interdisciplinary Center of Ecosystem Dynamics of Central Asia (EDCA), Freie Universität Berlin, Berlin, Germany School of Geography and Oceanography, Nanjing University, Nanjing, China
Kai Hartmann
Affiliation:
Institute of Geographical Sciences, Interdisciplinary Center of Ecosystem Dynamics of Central Asia (EDCA), Freie Universität Berlin, Berlin, Germany
Bernhard Diekmann
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Potsdam, Germany
Huijun Jin
Affiliation:
Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS), Lanzhou, China
Georg Stauch
Affiliation:
Department of Geography, RWTH Aachen University, Aachen, Germany
Sizhong Yang
Affiliation:
Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS), Lanzhou, China
Frank Lehmkuhl
Affiliation:
Department of Geography, RWTH Aachen University, Aachen, Germany
*
*Corresponding author at: GFZ German Research Centre for Geosciences, Section 5.2 Climate Dynamics and Landscape Evolution, Potsdam, Germany. Fax: + 49 30 83870753. E-mail address:edietze@gfz-potsdam.de (E. Dietze).

Abstract

Lake high-stand sediments are found in three onshore terraces at Lake Donggi Cona, northeastern Tibetan Plateau, and reveal characteristics of hydrological changes on lake shorelines triggered by climate change, geomorphological processes, and neo-tectonic movements. The terraces consist of fluvial–alluvial to littoral-lacustrine facies. End-member modeling of grain-size distributions allowed quantification of sediment transport processes and relative lake levels during times of deposition. Radiocarbon dating revealed higher than modern lake levels during the early and mid Holocene. Lake levels follow the trend of Asian monsoon dynamics, and are modified by local non-climatic drivers. Site-specific impacts explain fluctuations during the initial lake-level rise ~ 11 cal ka BP. Maximum lake extension reached ~ 9.2 cal ka BP, at ~ 16.5 m above present lake level (a.p.l.l.). Littoral and lacustrine sediment deposition paused during a phase of fluvial activity and post-depositional cryoturbations at ~ 8.5 cal ka BP, when the lake level fell to ~ 8 m a.p.l.l. After a second maximum at ~ 7.5 cal ka BP, lake level declined slightly at ~ 6.8 cal ka BP, probably due to a non-climatic pulse that caused lake opening. The level remained high until a transition towards drier conditions ~ 4.7 cal ka BP. Though discontinuous, high-stand sediments provide a unique, high-resolution archive.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aichner, B., Herzschuh, U., Wilkes, H., Schulz, H.-M., Wang, Y., Plessen, B., Mischke, S., Diekmann, B., and Zhang, C. Ecological development of Lake Donggi Cona, north-eastern Tibetan Plateau, since the late glacial on basis of organic geochemical proxies and non-pollen palynomorphs. Palaeogeography, Palaeoclimatology, Palaeoecology 313–314, (2012). 140149.CrossRefGoogle Scholar
Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D.B., Huang, X., Zhao, Y., Sato, T., Birks, H.J.B., Boomer, I., Chen, J., An, C., and Wünnemann, B. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews 27, (2008). 351364.CrossRefGoogle Scholar
Chinese Central Meteorological Office, Average Climatology for 841 Meteorological Stations throughout CHINA, 1951–2007 (Meteorological Data of China). (2008). Meteorology Press, Beijing.Google Scholar
Cohen, A.S. Paleolimnology: the History and Evolution of Lake Systems. (2003). Oxford University Press, New York.Google Scholar
Colman, S.M., Yu, S.-Y., An, Z., Shen, J., and Henderson, A.C.G. Late Cenozoic climate changes in China's western interior: a review of research on Lake Qinghai and comparison with other records. Quaternary Science Reviews 26, (2007). 22812300.Google Scholar
De Terra, H., and Hutchinson, G.E. Evidence of recent climate change shown by Tibetan highland lakes. The Geographical Journal 84, (1934). 311320.CrossRefGoogle Scholar
Dietze, E., Wünnemann, B., Diekmann, B., Aichner, B., Hartmann, K., Herzschuh, U., IJmker, J., Jin, H., Kopsch, C., Lehmkuhl, F., Li, S., Mischke, S., Niessen, F., Opitz, S., Stauch, G., and Yang, S. Basin morphology and seismic stratigraphy of Lake Donggi Cona, north-eastern Tibetan Plateau, China. Quaternary International 218, (2010). 131142.Google Scholar
Dietze, E., Hartmann, K., Diekmann, B., IJmker, J., Lehmkuhl, F., Opitz, S., Stauch, G., Wünnemann, B., and Borchers, A. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sedimentary Geology 243–244, (2012). 169180.CrossRefGoogle Scholar
Domrös, M., and Peng, G. The Climate of China. (1988). Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., and Revenaugh, J. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, (2005). 7186.CrossRefGoogle Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., and Matter, A. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300, (2003). 17371739.CrossRefGoogle Scholar
Folk, R.L., and Ward, W.C. Brazos river bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27, (1957). 326.CrossRefGoogle Scholar
Gasse, F., Arnold, M., Fontes, J.C., Fort, M., Gibert, E., Huc, A., Bingyan, L., Yuanfang, L., Qing, L., Melieres, F., Campo, E.V., Fubao, W., and Qingsong, Z. A 13,000-year climate record from western Tibet. Nature 353, (1991). 742745.CrossRefGoogle Scholar
Herzschuh, U., Winter, K., Wünnemann, B., and Li, S. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quaternary International 154–155, (2006). 113121.Google Scholar
IJmker, J., Stauch, G., Pötsch, S., Diekmann, B., Wünnemann, B., and Lehmkuhl, F. Dry periods on the NE Tibetan Plateau during the late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology 346–347, (2012). 108119.Google Scholar
IJmker, J., Stauch, G., Hartmann, K., Diekmann, B., Dietze, E., Opitz, S., Wünnemann, B., and Lehmkuhl, F. Environmental conditions in the Donggi Cona lake catchment, NE Tibetan Plateau, based on factor analysis of geochemical data. Journal of Asian Earth Sciences 44, (2012). 176188.Google Scholar
Jin, Z., Yu, J., Chen, H., Wu, Y., Wang, S., and Chen, S. The influence and chronological uncertainties of the 8.2 ka cooling event on continental climate records in China. The Holocene 17, (2007). 10411050.CrossRefGoogle Scholar
Lee, J., Li, S.-H., and Aitchison, J.C. OSL dating of paleoshorelines at Lagkor Tso, western Tibet. Quaternary Geochronology 4, (2009). 335343.Google Scholar
Lehmkuhl, F. The spatial distribution of loess and loess-like sediments in the mountain areas of Central and High Asia. Zeitschrift für Geomorphologie, N.F., Supplementbände 111, (1997). 97116.Google Scholar
Lehmkuhl, F., and Haselein, F. Quaternary paleoenvironmental change on the Tibetan Plateau and adjacent areas (Western china and Western Mongolia). Quaternary International 65–66, (2000). 121145.Google Scholar
Li, D., Li, Y., Ma, B., Dong, G., Wang, L., and Zhao, J. Lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, investigated using optically stimulated luminescence dating of beach ridges. Environmental Research Letters 4, (2009). http://dx.doi.org/10.1088/1748-9326/4/4/045204CrossRefGoogle Scholar
Lockot, G., (2010). Geomorphologisch-fernerkundliche Untersuchungen zur litoralen Entwicklung des Donggi Cona, Tibet Plateau (China). Diplom thesis, Institute of Geographical Sciences, Free University Berlin.Google Scholar
Long, H., Lai, Z., Wang, N., and Li, Y. Holocene climate variations from Zhuyeze terminal lake records in East Asian monsoon margin in arid northern China. Quaternary Research 74, (2010). 4656.Google Scholar
Madsen, D.B., Haizhou, M., Rhode, D., Brantingham, P.J., and Forman, S.L. Age constraints on the late Quaternary evolution of Qinghai Lake, Tibetan Plateau. Quaternary Research 69, (2008). 316325.Google Scholar
Miehe, G., Kaiser, K., Co, Sonam, Zhao, X.Q., and Liu, J.Q. Geo-ecological transect Studies in Northeast Tibet (Qinghai, China) reveal human-made mid-Holocene environmental changes in the upper Yellow River catchment changing forest to grassland. Erdkunde 62, (2008). 187199.Google Scholar
Mischke, S., and Zhang, C. Holocene cold events on the Tibetan Plateau. Global and Planetary Change 72, (2010). 155163.CrossRefGoogle Scholar
Mischke, S., Kramer, M., Zhang, C., Shang, H., Herzschuh, U., and Erzinger, J. Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record. Palaeogeography, Palaeoclimatology, Palaeoecology 267, (2008). 5976.CrossRefGoogle Scholar
Mischke, S., Zhang, C., Börner, A., and Herzschuh, U. Lateglacial and Holocene variation in aeolian sediment flux over the northeastern Tibetan Plateau recorded by laminated sediments of a saline meromictic lake. Journal of Quaternary Science 25, (2009). 162177.Google Scholar
Mischke, S., Aichner, B., Diekmann, B., Herzschuh, U., Plessen, B., Wünnemann, B., and Zhang, C. Ostracods and stable isotopes of a late glacial and Holocene lake record from the NE Tibetan Plateau. Chemical Geology 276, (2010). 95103.CrossRefGoogle Scholar
Morrill, C., Overpeck, J.T., and Cole, J.E. A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. The Holocene 13, (2003). 465476.Google Scholar
North, C.P., and Davidson, S.K. Unconfined alluvial flow processes: recognition and interpretation of their deposits, and the significance for palaeogeographic reconstruction. Earth-Science Reviews 111, (2012). 199223.CrossRefGoogle Scholar
Opitz, S., Wünnemann, B., Aichner, B., Dietze, E., Hartmann, K., Herzschuh, U., Ijmker, J., Lehmkuhl, F., Li, S., Mischke, S., Plotzki, A., Stauch, G., and Diekmann, B. Late glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 337–338, (2012). 159176.Google Scholar
Qiu, J. The third pole. Nature 454, (2008). 393396.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.CrossRefGoogle Scholar
Rohling, E.J., and Palike, H. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434, (2005). 975979.CrossRefGoogle Scholar
Schlütz, F., and Lehmkuhl, F. Holocene climatic change and the nomadic Anthropocene in Eastern Tibet: palynological and geomorphological results from the Nianbaoyeze Mountains. Quaternary Science Reviews 28, (2009). 14491471.CrossRefGoogle Scholar
Stauch, G., IJmker, J., Pötsch, S., Zhao, H., Hilgers, A., Diekmann, B., Dietze, E., Hartmann, K., Opitz, S., Wünnemann, B., and Lehmkuhl, F. Aeolian sediments on the north-eastern Tibetan Plateau. Quaternary Science Reviews 57, (2012). 7184.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J. Radiocarbon 35, (1993). 215230.Google Scholar
Sun, D., Bloemendal, J., Rea, D.K., Vandenberghe, J., Jiang, F., An, Z., and Su, R. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sedimentary Geology 152, (2002). 263277.CrossRefGoogle Scholar
Sun, J., Li, S.-H., Muhs, D.R., and Li, B. Loess sedimentation in Tibet: provenance, processes, and link with Quaternary glaciations. Quaternary Science Reviews 26, (2007). 22652280.CrossRefGoogle Scholar
Taft, L., Wiechert, U., Riedel, F., Weynell, M., and Zhang, H. Sub-seasonal oxygen and carbon isotope variations in shells of modern Radix sp. (Gastropoda) from the Tibetan Plateau: potential of a new archive for palaeoclimatic studies. Quaternary Science Reviews 34, (2012). 4456.Google Scholar
Van der Woerd, J., Tapponnier, P., Ryerson, F.J., Meriaux, A.-S., Meyer, B., Gaudemer, Y., Finkel, R.C., Caffee, M.W., Guoguang, Z., and Zhiqin, X. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophysical Journal International 148, (2002). 356388.CrossRefGoogle Scholar
Van Vliet-Lanoë, B. Frost and soils: implications for paleosols, paleoclimates and stratigraphy. Catena 34, (1998). 157183.Google Scholar
Wang, Y., Liu, X., and Herzschuh, U. Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth-Science Reviews 103, (2010). 135153.Google Scholar
Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P., and Jetel, M.T. Structure and origin of Holocene cold events. Quaternary Science Reviews 30, (2011). 31093123.CrossRefGoogle Scholar
Wünnemann, B., Demske, D., Tarasov, P., Kotlia, B.S., Reinhardt, C., Bloemendal, J., Diekmann, B., Hartmann, K., Krois, J., Riedel, F., and Arya, N. Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quaternary Science Reviews 29, (2010). 11381155.Google Scholar
Supplementary material: File

Dietze et al. Supplementary Material

Supplementary Material

Download Dietze et al. Supplementary Material(File)
File 7 KB
Supplementary material: PDF

Dietze et al. Supplementary Material

Figure S1

Download Dietze et al. Supplementary Material(PDF)
PDF 174.7 KB