Skip to main content Accessibility help

The environmental impact of a pre-Columbian city based on geochemical insights from lake sediment cores recovered near Cahokia

  • David P. Pompeani (a1) (a2), Aubrey L. Hillman (a1) (a3), Matthew S. Finkenbinder (a1) (a4), Daniel J. Bain (a1), Alexander Correa-Metrio (a5), Katherine M. Pompeani (a6) and Mark B. Abbott (a1)...


Cahokia is the largest documented urban settlement in the pre-Columbian United States. Archaeological evidence suggests that the city, located near what is now East St. Louis, Illinois, began to rapidly expand starting around AD 1050. At its height, Cahokia extended across 1000 ha and included large plazas, timber palisade walls, and hundreds of monumental earthen mounds. Following several centuries of occupation, the city experienced a period of gradual abandonment from about AD 1200 to 1400. Here, we present geochemical data from a 1500-year-old sediment core from nearby Horseshoe Lake that records watershed impacts associated with the growth and decline of Cahokia. Sedimentary analysis shows a distinctive 24-cm-thick, gray, fine-grained layer formed between AD 1150 and 1220 and characterized by low carbonate δ13C, elevated sorbed metal concentrations, and higher organic matter δ15N. The deposition of this layer is contemporaneous with archaeological evidence of increased agricultural activity, earthen mound construction, and higher populations surrounding the lake. We hypothesize that these human impacts increased soil erosion, producing new sediment sources from deeper soil horizons, and shifted dissolved transport to the lake, producing lower carbonate δ13C values, higher concentrations of lead, copper, potassium, and aluminum, and increased δ15N, likely due to contributions of enriched nitrogen from sewage.


Corresponding author

*Corresponding author at: Department of Geography, Kansas State University, Manhattan, Kansas 66506, USA. E-mail address: (D.P. Pompeani).


Hide All
Abbott, M.B., Stafford, T.W., 1996. Radiocarbon geochemistry of ancient and modern lakes, Arctic Lakes, Baffin Island. Quaternary Research 45, 300311.
Abbott, M.B., Wolfe, A.P., 2003. Intensive Pre-Incan metallurgy recorded by lake sediments from the Bolivian Andes. Science 301, 18931895.
Anonymous, , 1882. History of Madison. W.R. Brink & Co., Illinois.
Baires, S.E., Baltus, M.R., Buchanan, M.E., 2015. Correlation does not equal causation: questioning the Great Cahokia Flood. Proceedings of the National Academy of Sciences USA 112, E3753.
Beach, T., Luzzadder-Beach, S., Cook, D., Dunning, N., Kennett, D.J., Krause, S., Terry, R., Trein, D., Valdez, F., 2015. Ancient Maya impacts on the Earth’s surface: an Early Anthropocene analog? Quaternary Science Reviews 124, 130.
Benson, L., Pauketat, T.R., Cook, E., 2009. Cahokia’s boom and bust in the context of climate change. American Antiquity 74, 467483.
Bettis, A.E., 2003. Last Glacial loess in the conterminous USA. Quaternary Science Reviews 22, 19071946.
Binford, M.W., 1990. Calculation and uncertainty analysis of Pb-210 dates for PIRLA project lake sediment cores. Journal of Paleolimnology 3, 253267.
Blaauw, M., 2010. Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.
Bloom, P.R., 1981. Metal-Organic Matter Interactions in Soil. ASA Special Publication. Soil Science Society of America, Madison, WI.
Booth, D.L., Koldehoff, B., 1999. The emergency watershed project, archeological investigations for the 1998 Metro East ditch cleanout project in Madison and St. Clair Counties, Illinois. In: Emerson, T.E. (Ed.). Illinois Transportation Archeological Research Program, Research Reports, Vol. 62. Board of Trustees of the University of Illinois, 417 p. University of Illinois, Urbana–Champaign.
Brenner, M., 1983. Paleolimnology of the Peten Lake district, Guatemala. Hydrobiologia 103, 205210.
Brenner, M., Rosenmeier, M.F., Hodell, D.A., Curtis, J.H., 2002. Paleolimnology of the Maya Lowlands; long-term perspectives on interactions among climate, environment, and humans. Ancient Mesoamerica 13, 141157.
Brugam, R., Bala, I., Martin, J., Vermillion, B., Retzlaff, W., 2003. The sedimentary record of environmental contamination in Horseshoe Lake, Madison County, Illinois. Transactions of the Illinois State Academy of Science 96, 205217.
Chastain, M.L., Deymier-Black, A.C., Kelly, J.E., Brown, J.A., Dunand, D.C., 2011. Metallurgical analysis of copper artifacts from Cahokia. Journal of Archaeological Science 38, 17271736.
Clark, J.S., 1988. Particle motion and the theory of charcoal analysis: source area, transport, deposition, and sampling. Quaternary Research 30, 6780.
Cooke, C.A., Abbott, M.B., Wolfe, A.P., Kittleson, J.L., 2007. A millenium of metallurgy recorded by lake sediments from Morococha, Peruvian Andes. Environmental Science and Technology 41, 34693474.
Cooke, C.A., Bindler, R., 2015. Lake sediment records of preindustrial metal pollution. In: Blais, J.M., Rosen, M.R., Smol, J.P. (Eds.), Environmental Contaminants: Using Natural Archives to Track Sources and Long-Term Trends of Pollution. Springer Netherlands.
Craine, J.M., Elmore, A.J., Aidar, M.P., Bustamante, M., Dawson, T.E., Hobbie, E.A., Kahmen, A., et al., 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183, 980992.
Cridlebaugh, P.A., 1984. American Indian and Euro-American Impact on Holocene Vegetation in the Lower Little Tennessee River Valley, East Tennessee. University of Tennessee, Knoxville, p. 225.
Dalan, R.A., 1997. The construction of Mississippian Cahokia, In: Pauketat, T.R., Emerson, T.E. (Eds.), Cahokia: Domination and Ideology in the Mississippian World. University of Nebraska Press, Lincoln, pp. 89102.
Dalan, R.A., Holley, G.R., Woods, W.I., Watters, H.W. Jr., Koepke, J.A., 2003. Envisioning Cahokia: A Landscape Perspective. Northerin Illinois Unversity Press, DeKalb.
Deevey, E.S., Gross, M.S., Hutchinson, G.E., Kraybill, H.L., 1954. The natural C-14 contents of materials from hard-water lakes. Geology 40, 285288.
Delcourt, P.A., Delcourt, H.R., 2004. Prehistoric Native Americans and Ecological Change. Cambridge University Press, New York.
Dubois, K.D., Lee, D., Veizer, J., 2010. Isotopic constraints on alkalinity, dissolved organic carbon, and atmospheric carbon dioxide fluxes in the Mississippi River. Journal of Geophysical Research 115, 111, G02018.
Dumont, E., Harrison, J.A., Kroeze, C., Bakker, E.J., Seitzinger, S.P., 2005. Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: results from a spatially explicit, global model. Global Biogeochemical Cycles 19, 113, GB4S02.
Eichler, A., Brütsch, S., Olivier, S., Papina, T., Schwikowski, M., 2009. A 750 year ice core record of past biogenic emissions from Siberian boreal forests. Geophysical Research Letters 36, 15, L18813.
Elliott, E.M., Brush, G.S., 2006. Sedimented organic nitrogen isotopes in freshwater wetlands record long-term changes in watershed nitrogen source and land usesotopes in freshwater wetlands. Environmental Science & Technology 40, 29102916.
Elliott, E.M., Kendall, C., Boyer, E.W., Burns, D.A., Lear, G.G., Golden, H.E., Harlin, K., Bytnerowicz, A., Butler, T.J., Glatz, R., 2009. Dual nitrate isotopes in dry deposition: Utility for partitioning NOx source contributions to landscape nitrogen deposition. Journal of Geophysical Research 114, 115, G04020.
Emerson, T.E., Hedman, K.M., 2016. The dangers of diversity: the consolidation and dissolution of Cahokia, Native North America’s first urban polity. In: Faulseit, R.K. (Ed.), Beyond Collapse: Archaeological Perspectives on Resilience, Revitalization and Transformation in Complex Societies. Southern Illinois University Press, Carbondale, pp. 147175.
Evans, R.D., 2007. Soil nitrogen isotope composition, In: Michener, R.H., Lajtha, K. (Eds.), Stable Isotopes in Ecology and Environmental Science. 2nd ed. Blackwell, Malden, MA.
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. 4th ed. John Wiley & Sons Ltd, Chichester, UK.
Farquhar, R.M., Walthall, J.A., Hancock, R.G.V., 1995. 18th century lead smelting in Central North America: evidence from lead isotope and INAA measurments. Journal of Archaeological Science 22, 639648.
Felix, J.D., Elliott, E.M., 2013. The agricultural history of human-nitrogen interactions as recorded in ice core δ15N-NO3. Geophysical Research Letters 40, 16421646.
Fleury, S., Malaizé, B., Giraudeau, J., Galop, D., Bout-Roumazeilles, V., Martinez, P., Charlier, K., Carbonel, P., Arnauld, M.-C., 2014. Impacts of Mayan land use on Laguna Tuspán watershed (Petén, Guatemala) as seen through clay and ostracode analysis. Journal of Archaeological Science 49, 372382.
Fortier, A., Emerson, T.E., McElrath, D., 2006. Calibrating and reassessing American bottom culture history. Southeastern Archaeology 25, 170211.
Fowler, M.J., 1997. The Cahokia Atlas, Revised: A Historical Atlas of Cahokia Archaeology. Studies in Archaeology No. 2. Illinois Transportation Archeological Research Program, University of Illinois, Urbana–Champaign.
Gilli, A., Anselmetti, F.S., Glur, L., Wirth, S.B., 2013. Lake sediments as archives of recurrence rates and intensities of past flood events. In: Beniston, M. (Ed.), Dating Torrential Processes on Fans and Cones. Springer, Dordrecht, Netherlands.
Graney, J.R., Halliday, A.N., Keeler, G.J., Nriagu, J.O., Robbins, J.A., Norton, S.A., 1995. Isotopic record of lead pollution in lake sediments from the northeastern United States. Geochimica et Cosmochimica Acta 59, 17151728.
Grimley, D.A., Phillips, A.C., Lepley, S.W., 2007. Surficial geology of Monks Mound Quadrangle, Madison and St. Clair Counties, Illinois. In: Illinois State Geological Survey (Ed.), Illinois Preliminary Geologic Map. Illinois Department of Natural Resources, Champaign, IL.
Hammarlund, D., Aravena, R., Barnekow, L., Buchardt, B., Possnert, G., 1997. Multi-component carbon isotope evidence of early Holocene environmental change and carbon-flow pathways from a hard-water lake in northern Sweden. Journal of Paleolimnology 18, 219233.
Heiri, O., Lotter, A.F., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.
Helios Rybicka, E., Calmano, W., Breeger, A., 1995. Heavy metals sorption/desorption on competing clay minerals; an experimental study. Applied Clay Science 9, 369381.
Hill, T.E., Evans, R.L., Bell, J.S., 1981. Water Quality Assessment of Horseshoe Lake. Illinois State Water Survey Contract Report, Peoria.
Hillman, A.L., Yu, J., Abbott, M.B., Cooke, C.A., Bain, D.J., Steinman, B.A., 2014. Rapid environmental change during dynastic transitions in Yunnan Province, China. Quaternary Science Reviews 98, 2432.
Hilton, J., Davison, W., Ochsenbein, U., 1985. A mathematical model for analysis of sediment core data: implications for enrichment factor calculations and trace-metal transport mechanisms. Chemical Geology 48, 281291.
Hong, S., Candelone, J.P., Patterson, C.C., Boutron, C.F., 1994. Greenland Ice evidence of hemispheric lead pollution two milennia ago by the Greek and Roman civilization. Science 265, 18411843.
Illinois EPA, 2009. Cahokia Canal Watershed TMDL. Sprinfield, Illinois, Accessed: November 27, 2018.
Iseminger, W.R., 2010. Cahokia Mounds: America’s First City. History Press, Charleston, SC.
Iseminger, W.R., Pauketat, T.R., Koldehoff, L.S., Kelly, L.S., Blake, L., 1990. The Archeology of the Cahokia Palisade, Part I. East Palisade Excavations. Illinois Cultural Resource Study 14. Illinois Historic Preservation Agency, Springfield.
Jacob, J.S., 1995. Ancient Maya wetland agricultural fields in Cobweb Swamp, Belize: construction, chronology, and function. Journal of Field Archaeology 22, 175190.
Kehrwald, N., Zangrando, R., Gabrielli, P., Jaffrezo, J.-L., Boutron, C., Barbante, C., Gambaro, A., 2012. Levoglucosan as a specific marker of fire events in Greenland snow. Tellus B 64, 19, 18196.
Kelly, J., Brown, J., 2010. Just in time: dating Mound 34 at Cahokia. Illinois Antiquity 45, 38.
Kelly, J.E., 1997. Stirling-Phase sociopolitical activity at East St. Louis and Cahokia. In: Pauketat, T.R., Emerson, T.E. (Eds.), Cahokia: Domination and Ideology in the Mississippian World. University of Nebraska Press, Lincoln, pp. 141166.
Kleeman, M.J., Schauer, J.J., Cass, G.R., 1999. Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling and cigarettes. Environmental Science & Technology 33, 35163523.
Knox, J.C., 1977. Human impacts on Wisconsin stream channels. Annals of the Association of American Geographers 67, 323342.
Kovarik, W., 2005. Ethyl-leaded gasoline: how a classic occupational disease became an international public health disaster. International Journal of Occupation Environmental Health 11, 384397.
Krumm, R.J., 1984. A Slope Stability Problem: Analysis of a Slump-Type Landslide. Southern Illinois University at Edwardsville, p. 137.
Lane, C.S., Cummings, K.E., Clark, J.J., 2010. Maize pollen deposition in modern lake sediments: a case study from Northeastern Wisconsin. Review of Palaeobotany and Palynology 159, 177187.
Larson, T.V., Koenig, J.Q., 1994. Wood smoke: emissions and noncancer respiratory effects. Annual Review in Public Health 15, 133156.
Lee, C.L., Qi, S.H., Zhang, G., Luo, C.L., Zhao, L.Y.L., Li, X.D., 2008. Seven thousand years of records on the mining and utilization of metals from lake sediments in central China. Environmental Science & Technology 42, 47324738.
Lentz, D.L., 2000. Imperfect Balance: Landscape Transformations in the Precolumbian Americas. Columbia University Press, New York.
Li, H.C., Ku, T.L., 1997. δ13C-δ18O covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 133, 6980.
Lopinot, N., Woods, W., 1993. Wood Overexploitation and the Collapse of Cahokia. University Press of Florida, Gainesville, FL.
March, D.D., 1967. The History of Missouri. Lewis Historical Publishing Company, New York.
Martinez-Cortizas, A., Garcia-Rodeja, E., Pombal, X.P., Munoz, J.C.N., Weiss, D., Cheburkin, A.K., 2002. Atmospheric Pb deposition in Spain during the last 4600 years recorded by two ombrotrophic peat bogs and implications for the use of peat as archive. Science of the Total Environment 292, 3344.
McLauchlan, K., 2003. Plant cultivation and forest clearance by prehistoric North Americans: pollen evidence from Fort Ancient, Ohio, USA. The Holocene 13, 557566.
Meeks, S.C., Anderson, D.G., 2013. Drought, subsistence stress, and population dynamics: assessing Mississippian abandoment of the Vacant Quarter. In: Wingard, J.D., Hayes, S.E. (Eds.), Soils, Climate, & Society. Archaeological Investigations in Ancient America. University Press of Colorado, Boulder.
Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27, 213250.
Milner, G.R., 1998. The Cahokia Chiefdom: The Archeology of a Mississippian Society. Smithsonian Institution Press, Washington, DC.
Munoz, S.E., Gruley, K.E., Fike, D.A., Schroeder, S., Williams, J.W., 2015a. Reply to Baires et al.: Shifts in Mississippi River flood regime remain a contributing factor to Cahokia’s emergence and decline. Proceedings of the National Academy of Sciences USA 112, E3754.
Munoz, S.E., Gruley, K.E., Massie, A., Fike, D.A., Schroeder, S., Williams, J.W., 2015b. Cahokia’s emergence and decline coincided with shifts of flood frequency on the Mississippi River. Proceedings of the National Academy of Sciences USA 112, 63196324.
Munoz, S.E., Mladenoff, D.J., Schroeder, S., Williams, J.W., Bush, M., 2014a. Defining the spatial patterns of historical land use associated with the indigenous societies of eastern North America. Journal of Biogeography 41, 21952210.
Munoz, S.E., Schroeder, S., Fike, D.A., Williams, J.W., 2014b. A record of sustained prehistoric and historic land use from the Cahokia region, Illinois, USA. Geology 42, 499502.
Murty, D., Kirschbaum, M.U.F., McMurtrie, R.E., McGilvray, H., 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology 8, 105123.
National Oceanic and Atmospheric Administration, 2014. St. Louis Mississippi River Gauge—EADM7. Advanced Hydrologic Prediction Service. Accessed: November 27, 2018
O’Connell, M., Ghilardi, B., Morrison, L., 2017. A 7000-year record of environmental change, including early farming impact, based on lake-sediment geochemistry and pollen data from County Sligo, western Ireland. Quaternary Research 81, 3549.
Ollendorf, A.L., 1993. Changing Landscapes in the American Bottoms (USA): An Interdisciplinary Investigation with an Emphasis on the Late-Prehistoric and Early-Historic Periods. University of Minnesota, Minneapolis.
Osleger, D.A., Heyvaert, A.C., Stoner, J.S., Verosub, K.L., 2009. Lacustrine turbidites as indicators of Holocene storminess and climate: Lake Tahoe, California and Nevada. Journal of Paleolimnology 42, 103122.
Pauketat, T.R., 1998. Refiguring the archaeology of Greater Cahokia. Journal of Archaeological Research 6, 4589.
Pauketat, T.R., 2003. Resettled farmers and the making of a Mississippian polity. American Antiquity 68, 7398.
Pauketat, T.R., Fortier, A., Alt, S., Emerson, T., 2013. A Mississippian conflagration at East St. Louis and its political-historical implications. Journal of Field Archaeology 38, 210226.
Pauketat, T.R., Lopinot, N.H., 1997. Cahokian population dynamics. In: Pauketat, T.R., Emerson, T.E. (Eds.), Cahokia: Domination and Ideology in the Mississippian World. University of Nebraska Press, Lincoln, pp. 103123.
Peacock, E., Haag, W.R., Warren, M.L. Jr., 2005. Prehistoric decline in freshwater mussels coincident with the advent of maize agriculture. Conservation Biology 19, 547551.
Peterson, D.H., 2003. Red metal poundings and the “Neubauer Process”: Copper Culture metallurgical technology. Central States Archaeological Journal 50, 102105.
Pompeani, D.P., Abbott, M.B., Bain, D.J., DePasqual, S., Finkenbinder, M.S., 2015. Copper mining on Isle Royale 6500–5400 years ago identified using sediment geochemistry from McCargoe Cove, Lake Superior. The Holocene 25, 253262.
Pompeani, D.P., Abbott, M.B., Steinman, B.A., Bain, D.J., 2013. Lake sediments record prehistoric lead pollution related to early copper production in North America. Environmental Science & Technology 47, 55455552.
Rasband, W.S., 2005. ImageJ. Version 1.32j, 1.32 ed [computer software]. National Institutes of Health, Bethesda, MD.
Renberg, I., Persson, M.W., Emteryd, O., 1994. Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368, 323326.
Riley, T.J., Gregory, G.R., Bareis, C.J., Fortier, A.C., Parker, K.E., 1994. Accelerator mass spectrometry (AMS) dates confirm early Zea mays in the Mississippi River Valley. American Antiquity 59, 490498.
Rosenmeier, M.F., Hodell, D.A., Brenner, M., Curtis, J.H., Guilderson, T.P., 2002. A 4000-year lacustrine record of environmental change in the southern Maya lowlands, Petén, Guatemala. Quaternary Research 57, 183190.
Ruddiman, W.F., Fuller, D.Q., Kutzbach, J.E., Tzedakis, P.C., Kaplan, J.O., Ellis, E.C., Vavrus, S.J., Roberts, C.N., Fyfe, R., He, F., Lemmen, C., Woodbridge, J., 2016. Late Holocene climate: natural or anthropogenic? Reviews of Geophysics 54, 93118.
Salomons, W., Mook, W.G., 1991. Isotope geochemistry of carbonates in the weathering zone. In: Taylor, H.P. Jr, O’Neil, J.R., Kaplan, I.R. (Eds.), Stable Isotope Geochemistry: A Tribute to Samuel Epstein, 239-269. Geochemical Society Special Publication 3. Geochemical Society, San Antonio, TX.
Simon, M.L., 2017. Reevaluating the evidence for Middle Woodland maize from the Holding Site. American Antiquity 82, 140150.
Sponheimer, M., Robinson, T., Ayliffe, L., Passey, B., Roeder, B., Shipley, L., Lopez, E., Cerling, T., Dearing, D., Ehleringer, J., 2003. An experimental study of carbon-isotope fractionation between diet, hair, and feces of mammalian herbivores. Canadian Journal of Zoology 81, 871876.
Stinchcomb, G.E., Messner, T.C., Driese, S.G., Nordt, L.C., Stewart, R.M., 2011. Pre-colonial (A.D. 1100–1600) sedimentation related to prehistoric maize agriculture and climate change in eastern North America. Geology 39, 363366.
Stuiver, M., Reimer, P.J., Reimer, R., 2015. CALIB 7.1 Radiocarbon Calibration 7.1 ed. Accessed: November 27, 2018.
Trimble, S.W., 1999. Decreased rates of alluvial sediment storage in Coon Creek Basin, Wisconsin, 1975–93. Science 285, 12441246.
Tulowiecki, S.J., Larsen, C.P.S., 2015. Native American impact on past forest composition inferred from species distribution models, Chautauqua County, New York. Ecological Monographs 85, 557581.
Uglietti, C., Gabrielli, P., Cooke, C.A., Vallelonga, P., Thompson, L.G., 2015. Widespread pollution of the South American atmosphere predates the industrial revolution by 240 y. Proceedings of the National Academy of Sciences USA 112, 23492354.
US EPA, 1990. Superfund record of decision: NL Industries/Taracorp Lead Smelting, IL. Accessed: November 27, 2018.
US EPA, 2014. Superfund site: Chemetco Hartford, IL. Accessed: November 27, 2018.
Vermillion, B., Brugam, R., Retzlaff, W., Bala, I., 2005. The sedimentary record of environmental lead contamination at St. Louis, Missouri (USA) area smelters. Journal of Paleolimnology 33, 189203.
Wang, S., Jin, X., Bu, Q., Zhou, X., Wu, F., 2006. Effects of particle size, organic matter and ionic strength on the phosphate sorption in different trophic lake sediments. Journal of Hazardous Materials 128, 95105.
White, A.J., Stevens, L.R., Lorenzi, V., Munoz, S.E., Lipo, C.P., Schroeder, S., 2018. An evaluation of fecal stanols as indicators of population change at Cahokia, Illinois. Journal of Archaeological Science 93, 129134.
Whitlock, C., Anderson, R.S., 2003. Fire history reconstructions based on sediment records from lakes and wetlands. In: Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W. (Eds.), Fire and Climatic Change in Temperate Ecosystems of the Western Americas, Vol. 160, 331. Springer, New York, NY.
Widory, D., Petelet-Giraud, E., Negrel, P., LaDouche, B., 2005. Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis. Environmental Science & Technology 39, 539548.
Yerkes, R.W., 2005. Bone chemistry, body parts, and growth marks: evaluating Ohio Hopewell and Cahokia Mississippian seasonality, subsistence, ritual and feasting. American Antiquity 70, 241265.


Type Description Title
Supplementary materials

Pompeani et al. supplementary material
Tables S1-S2 and Figures S1-S2

 Word (907 KB)
907 KB

The environmental impact of a pre-Columbian city based on geochemical insights from lake sediment cores recovered near Cahokia

  • David P. Pompeani (a1) (a2), Aubrey L. Hillman (a1) (a3), Matthew S. Finkenbinder (a1) (a4), Daniel J. Bain (a1), Alexander Correa-Metrio (a5), Katherine M. Pompeani (a6) and Mark B. Abbott (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed