Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T03:17:23.243Z Has data issue: false hasContentIssue false

Geochemical evidence of the 8.2 ka event and other Holocene environmental changes recorded in paleolagoon sediments, southeastern Brazil

Published online by Cambridge University Press:  20 January 2017

Alethéa E.M. Sallun*
Affiliation:
Instituto Geológico, Secretaria do Meio Ambiente do Estado de São Paulo, 04301-903 São Paulo, SP, Brazil
William Sallun Filho
Affiliation:
Instituto Geológico, Secretaria do Meio Ambiente do Estado de São Paulo, 04301-903 São Paulo, SP, Brazil Instituto de Geociências, Universidade de S"o Paulo, 05508-080 São Paulo, SP, Brazil
Kenitiro Suguio
Affiliation:
Instituto de Geociências, Universidade de S"o Paulo, 05508-080 São Paulo, SP, Brazil CEPPE, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
Marly Babinski
Affiliation:
Instituto de Geociências, Universidade de S"o Paulo, 05508-080 São Paulo, SP, Brazil
Simone M.C.L. Gioia
Affiliation:
Instituto de Geociências, Universidade de S"o Paulo, 05508-080 São Paulo, SP, Brazil
Benjamin A. Harlow
Affiliation:
Stable Isotope Core Laboratory, Washington State University, Pullman, WA 99164-4236, USA
Wania Duleba
Affiliation:
Instituto de Geociências, Universidade de S"o Paulo, 05508-080 São Paulo, SP, Brazil
Paulo E. De Oliveira
Affiliation:
CEPPE, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
Maria Judite Garcia
Affiliation:
CEPPE, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
Cinthia Z. Weber
Affiliation:
Instituto Geológico, Secretaria do Meio Ambiente do Estado de São Paulo, 04301-903 São Paulo, SP, Brazil
Sérgio R. Christofoletti
Affiliation:
Instituto Geológico, Secretaria do Meio Ambiente do Estado de São Paulo, 04301-903 São Paulo, SP, Brazil Instituto Florestal, Secretaria do Meio Ambiente do Estado de S"o Paulo, 13500-970, Rio Claro, SP, Brazil
Camilla da S. Santos
Affiliation:
CEPPE, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
Vanda B. de Medeiros
Affiliation:
CEPPE, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
Juliana B. Silva
Affiliation:
Instituto de Geociências, Universidade de S"o Paulo, 05508-080 São Paulo, SP, Brazil
Maria Cristina Santiago-Hussein
Affiliation:
CEPPE, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
Rosana S. Fernandes
Affiliation:
CEPPE, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
*
*Corresponding author at: Instituto Geológico, Secretaria do Meio Ambiente do Estado de São Paulo, Av. Miguel Stéfano 3900, Água Funda, 04301-903, São Paulo, SP, Brazil. E-mail address:alethea@igeologico.sp.gov.br (A.E.M. Sallun).

Abstract

The paleoclimatic record of Juréia Paleolagoon, coastal southeastern Brazil, includes cyclic and gradual changes with different intensities and frequencies through geological time, and it is controlled by astronomical, geophysical, and geological phenomena. These variations are not due to one single cause, but they result from the interaction of several factors, which act at different temporal and spatial scales. Here, we describe paleoenvironmental evidence regarding climatic and sea level changes from the last 9400 cal yr BP at the Juréia Paleolagoon – one of the main groups of protected South Atlantic ecosystems. Geochemical evidences were used to identify anomalies from multi-proxy analyses of a paleolagoon sediment core. The anomalies of centennial scale were correlated to climate and transgression–regression cycles from the Holocene period. Decadal scale anomalous oscillations in the Quaternary paleolagoon sediments occur between 9400 and 7500 cal yr BP, correlated with long- and short-term natural events, which generated high sedimentation rates, mainly between 8385 and 8375 cal yr BP (10 cm/yr). Our results suggest that a modern-day short-duration North Atlantic climatic event, such as the 8.2 ka event, could affect the environmental equilibrium in South America and intensify the South American Summer Monsoon.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Absy, M.L., Cleef, A., Fournier, M., Martin, L., Servant, M., Sifeddine, A., Ferreira da Silva, M., Soubies, F., Suguio, K., Turcq, B., Van der Hammen, T., (1991). Mise en évidence de quatre phase d'ouverture de la foret dense dans le sudest de l'Amazonie au cours des 60000 dernieres années. Premiere comparaison avec dautres régions tropicales. Comptes Rendus de l'Académie des Sciences. Série II 312, 673678.Google Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., (1997). Holocene climatic instability: a prominent, widespread event 8,200 years ago. Geology 25, 483486.Google Scholar
Amaral, P.G.C., Ledru, M.P., Branco, F.R., Giannini, P.C.F., (2006). Late Holocene development of a mangrove ecosystem in southeastern Brazil (Itanhaém, State of São Paulo). Palaeogeography, Palaeoclimatology, Palaeoecology 241, 608620.Google Scholar
Angulo, R.J., Lessa, G.C., (1997). The Brazilian sea-level curves: a critical review with emphasis on the curves from Paranaguá and Cananéia regions. Marine Geology 140, 141166.Google Scholar
Angulo, R.J., Gianninni, P.C.F., Suguio, K., Pessenda, L.C.R., (1999). Relative sea-level changes in the last 5,500 years in Southern Brazil (Laguna-Imbituba region, Santa catarina State) based on vermetid 14C ages. Marine Geology 159, 323339.Google Scholar
Angulo, R.J., Lessa, G.C., de Souza, M.C., (2006). A critical review of mid-to late-Holocene sea-level fluctuations on the eastern Brazil coastline. Quaternary Science Reviews 25, 5–6, 486506.CrossRefGoogle Scholar
Anjos, R.M., Macario, K.D., Lima, T.A., Veiga, R., Carvalho, C., Fernandes, P.J.F., Vezzone, M., Bastos, J., (2010). Correlations between radiometric analysis of Quaternary deposits and the chronology of prehistoric settlements from the southeastern Brazilian coast. Journal of Environmental Radioactivity 101, 7581.CrossRefGoogle ScholarPubMed
Araujo, A.G.M., Neves, W.A., Piló, L.B., Atui, J.P.V., (2005). Holocene dryness and human occupation in Brazil during the “Archaic Gap”. Quaternary Research 64, 298307.Google Scholar
Arz, H.W., Lamy, F., Patzold, J., Muller, P.J., Prins, M., (2003). Mediterranean moisture source for an Early-Holocene humid period in the Northern Red Sea. Science 300, 5616, 118121.Google Scholar
Babinski, M., Van Schmus, W.R., Chemale, F., (1999). Pb–Pb dating and Pb isotope geochemistry of Neoproterozoic carbonate rocks from the São Francisco Basin, Brazil: implications for the mobility of Pb isotopes during tectonism and metamorphism. Chemical Geology 160, 175199.Google Scholar
Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., Veliz, C., (2001). Tropical climate changes at millenial and orbital timescales on the Bolivian Altiplano. Nature 409, 698701.CrossRefGoogle Scholar
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M.D., Gagnon, J.M., (1999). Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344348.Google Scholar
Barberi, M., Salgado-Labouriau, M.L., Suguio, K., (2000). Paleovegetation and paleoclimate of “Vereda de Águas Emendadas”, central Brazil. Journal of South American Earth Sciences 13, 241254.Google Scholar
Barth, O.M., Coelho, L.G., Santos, D.S., in press. Análises palinológicas inferindo variações ambientais em área de mangue da Baía de Sepetiba, estado do Rio de Janeiro. Journal of Integrated Coastal Zone Management 8, http://www.aprh.pt/rgci/pdf/rgcimang7_Barth.pdf.Google Scholar
Behling, H., (1995a). A high resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. Journal of Paleolimnology 14, 253268.Google Scholar
Behling, H., (1995b). Investigations into the Late Pleistocene and Holocene history of vegetation and climate in Santa Catarina (S Brazil). Vegetation History and Archaeobotany 4, 127152.Google Scholar
Behling, H., (1997). Late Quaternary vegetation, climate and fire history of the Araucaria forest and campos region from Serra Campos Gerais, Parana State (South Brazil). Review of Palaeobotany and Palynology 97, 109121.Google Scholar
Behling, H., Costa, M.L., (2001). Holocene vegetational and coastal environmental changes from the Lago Crispim record in northeastern Pará State, eastern Amazonia. Review of Palaeobotany and Palynology 114, 145155.CrossRefGoogle ScholarPubMed
Behling, H., (2002). Impact of the Holocene sea-level changes in coastal, eastern, and central Amazonia. Amazoniana 17, 4152.Google Scholar
Behling, H., Pillar, V.D., Orlóci, L., Bauermann, S.G., (2004). Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 277297.Google Scholar
Behling, H., Pillar, V.D., Bauermann, S.G., (2005). Late Quaternary grassland (Campos), gallery forest, fire and climate dynamics, studied by pollen, charcoal and multivariate analysis of the São Francisco de Assis core in western Rio Grande do Sul (southern Brazil). Review of Palaeobotany and Palynology 133, 235248.CrossRefGoogle Scholar
Bengtsson, L., Enell, M., (1986). Chemical analysis. Berglund, B.E., Handbook of Holocene Paleoecology and Paleohydrology. Wiley, Chichester. 423451.Google Scholar
Betancourt, J.L., Latorre, C., Rech, J.A., Quade, J., Rylander, K.A., (2000). A 22,000-year record of monsoonal precipitation from northern Chile's Atacama desert. Science 289, 5484, 15421546.Google Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., Demenocal, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G., (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 12571266.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 21302136.Google Scholar
Carré, M., Azzoug, M., Bentaleb, I., Chase, B.M., Fontugne, M., Jackson, D., Ledru, M-P., Maldonado, A., Sachs, J.P., Schauer, A.J., in press. Mid-Holocene mean climate in the south-eastern Pacific and its influence on South America. Quaternary International, http://dx.doi.org/10.1016/j.quaint.2011.02.004.Google Scholar
Cheng, H., Flitmann, D., Edwards, R.L., Wang, X., Cruz, F.W., Auler, A.S., Mangini, A., Wang, Y., Kong, X., Burns, S.J., Matter, A., (2009). Timing and structure of the 8.2 ky event inferred from δ 18O records of stalagmites from China, Oman and Brazil. Geology 37, 11, 10071010.Google Scholar
Coelho, L.G., Barth, M., Chaves, H.A.F., (2002). Palynological records of environmental changes in Guaratiba mangrove area, southeast Brazil, in the last 6,000 years B.P. Pesquisas em Geociências 29, 7179.Google Scholar
Coelho, L.G., Barth, O.M., de Araujo, D.S.D., (2008). Pollen analysis of Holocene sediments from the Poço das Antas National Biological Reserve, Silva Jardim, Rio de Janeiro, Brazil. Anais da Academia Brasileira de Ciências 80, 531541.Google Scholar
Coplen, T.B., (1994). Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure and Applied Chemistry 66, 2, 273276.Google Scholar
Coplen, T.B., Brand, W.A., Gehre, M., Gröning, M., Meijer, H.J., Toman, B., Verkouteren, R.M., (2006). New guidelines for δ 13C measurements. Analytical Chemistry 78, 24392441.CrossRefGoogle Scholar
Cordeiro, R., Turcq, B., Suguio, K., Oliveira da Silva, A., Sifeddine, A., Volkmer Ribeiro, C., (2008). Holocene fires in East Amazonia (Carajás), new evidences, chronology and relation with paleoclimate. Global and Planetary Change 61, 4962.CrossRefGoogle Scholar
Cruz, F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Silva Dias, P.L., Viana jr., O., (2005). Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 6366.CrossRefGoogle Scholar
Cruz, J.F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., (2006). Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth and Planetary Science Letters 248, 495507.CrossRefGoogle Scholar
De Oliveira, P.E., (1992). A palynological record of Late Quaternary vegetational and climatic change in Southeastern Brazil. Thesis, Ohio State University.Google Scholar
De Oliveira, P.E., Barreto, A.M.F., Suguio, K., (1999). Late Pleistocene/Holocene climatic and vegetacional history the Brazilian caatinga: the fossil dunes of the middle São Francisco River. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 319337.Google Scholar
De Toledo, M.B., Bush, M.B., (2008). Vegetation and hydrology changes in Eastern Amazonia inferred from a pollen record. Anais da Academia Brasileira de Ciências 80, 191203.Google Scholar
Dillenburg, S.R., Hesp, P.A., (2009). Geology and Geomorphology of Holocene Coastal Barriers of Brazil. Springer, Heidelberg. 107 380. pp.Google Scholar
Douglass, D.C., Singer, B.S., Kaplan, M.R., Ackert, R.P., Mickelson, D.M., Caffee, M.W., (2005). Evidence for Early Holocene glacial advances in southern South America from cosmogenic surface exposure dating. Geology 33, 237240.Google Scholar
Fry, B., Silva, S.R., Kendall, C., Anderson, R.K., (2002). Oxygen isotope corrections for online δ 34S analysis. Rapid Communications in Mass Spectrometry 16, 854858.Google Scholar
Garcia, M.J., De Oliveira, P.E., Siqueira, E., Fernandes, R.S., (2004). A Holocene vegetational and climatic record from the Atlantic rainforest belt of coastal State of São Paulo, SE, Brazil. Review of Palaeobotany and Palynology 131, 181199.Google Scholar
Gasse, F., Van Campo, E., (1994). Abrupt post glacial events in West Asia and North Africa monsoon dynamics. Earth and Planetary Science Letters 126, 435456.Google Scholar
Glasser, N.F., Clemmens, S., Schnabel, C., Fenton, C.R., McHargue, L., (2009). Tropical glacier fluctuations in the Cordillera Blanca, Peru between 12.5 and 7.6 ka from cosmogenic 10Be dating. Quaternary Science Reviews 28, 27–28, 34483458.Google Scholar
Gonzalez-Samperiz, P., Utrilla, P., Mazo, C., Valero-Garces, B., Sopena, Mc., Morellon, M., Sebastian, M., Moreno, A., Martinez-Bea, M., (2009). Patterns of human occupation during the early Holocene in the Central Ebro Basin (NE Spain) in response to the 8.2 ka climatic event. Quaternary Research 71, 2, 121132.Google Scholar
Hijma, M.P., Cohen, K.M., (2010). Timing and magnitude of the sea-level jump preluding the 8.2 kiloyear event. Geology 38, 3, 275278.Google Scholar
Hu, F.S., Slawinski, D., Wright jr., H.E., Ito, E., Johnson, R.G., Kelts, K.R., McEwan, R.F., Boedigheimer, A., (1999). Abrupt changes in North American climate during early Holocene times. Nature 400, 437440.CrossRefGoogle Scholar
Hughen, K.A., Southon, J.R., Lehman, S.J., Overpeck, J.T., (2000). Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290, 5498, 19511954.Google Scholar
Irion, G., Bush, M.B., Nunes de Mello, J.A., Stüben, D., Neumann, T., Müller, G., de Morais, J.O., Junk, J.W., (2006). A multiproxy palaeoecological record of Holocene lake sediments from the Rio Tapajós, eastern Amazonia. Palaeogeography, Palaeoclimatology, Palaeoecology 240, 523535.Google Scholar
Iriondo, M.H., Garcia, N., (1993). Climatic variations in the Argentine plains during the last 18,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 209220.Google Scholar
Kaufman, S., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P.J., Brubaker, L.B., Coats, L.L., Cwynar, L.C., Duvall, M.L., Dyke, A.S., Edwards, M.E., Eisner, W.R., Gajewski, K., Geirsdottir, A., Hu, F.S., Jennings, A.E., Kaplan, M.R., Kerwin, M.W., Lozhkin, A.V., MacDonald, G.M., Miller, G.H., Mock, C.J., Oswald, W.W., Otto-Bliesner, B.L., Porinchu, D.F., Ruhland, K., Smol, J.P., Steig, E.J., Wolfe, B.B., (2004). Holocene thermal maximum in the western Arctic (0–180°W). Quaternary Science Reviews 23, 529560.Google Scholar
Keigwin, L.D., Sachs, J., Rosenthal, Y., Boyle, E.A., (2005). The 8200 year B.P. event in the slope water system, western subpolar North Atlantic. Paleoceanography 20, PA2003.Google Scholar
Kendall, R.A., Mitrovica, J.X., Milne, G.A., Törnqvist, T.E., Li, Y., (2008). The sea-level fingerprint of the 8.2 ka climate event. Geology 36, 423426.Google Scholar
Klein, D.A., (2005). Registros de variações ambientais no Canal de São Sebastião (Estado de São Paulo). durante o "ltimo Ciclo Glacial. Thesis, University of São Paulo, .Google Scholar
Klitgaard-Kristensen, D., Sejrup, H.P., Haflidason, H., Johnsen, S., Spurk, M., (1998). A regional 8200 cal. yr BP cooling event in northwest Europe, induced by final stages of the Laurentide ice-sheet deglaciation?. Journal of Quaternary Science 13, 165169.3.0.CO;2-#>CrossRefGoogle Scholar
Kobashi, T., Severinghaus, J.P., Brook, E.J., Barnola, J.-M., Grachev, A.M., (2007). Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quaternary Science Reviews 26, 12121222.Google Scholar
Kotthoff, U., Pross, J., Müller, U., Peyorn, O., Schmiedl, G., Schulz, H., Bordon, A., (2008). Climate dynamics in the borderlands of the Aegean Sea during formation of sapropel 1 deduced from marine pollen record. Quaternary Science Reviews 27, 832845.CrossRefGoogle Scholar
Krouse, H.R., Coplen, T.B., (1997). Reporting of relative sulfur isotope-ratio data. Pure and Applied Chemistry 69, 2, 293295.Google Scholar
Lachniet, M.S., Asmerom, Y., Burns, S.J., Patterson, W.P., Polyak, V., Seltzer, G.O., (2004). Tropical response to the 8200 yr B.P. cold event? Speleothem isotopes indicate a weakened early Holocene monsoon in Costa Rica. Geology 32, 11, 957960.Google Scholar
Ledru, M.-P., Braga, P.I.S., Soubiès, F., Fournier, M., Martin, L., Suguio, K., Turcq, B., (1996). The last 50,000 years in the Neotropics (Southern Brazil) evolution of vegetation and climate. Palaeogeography, Palaeoclimatology, Palaeoecology 123, 239257.Google Scholar
Ledru, M.-P., Mourguiart, P., Riccomini, C., (2009). Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 140152.Google Scholar
Lessa, G.C., Angulo, R.J., (1998). Oscillations or not oscillations, that is the question – Reply. Discussion on “L. Martin et al. Oscillations or not oscillations, that is the question: Comment (Marine Geology, 150: 179–187).”. Marine Geology 150, 189196.Google Scholar
Leverington, D.W., Mann, J.D., Teller, J.T., (2002). Changes in the bathymetry and volume of glacial Lake Agassiz between 9200 and 7600 14C yr B.P. Quaternary Research 57, 244252.Google Scholar
Ljung, K., Björck, S., Renssen, H., Hammarlund, D., (2008). South Atlantic island record reveals a South Atlantic response to the 8.2 kyr event. Climate of the Past 4, 1, 3545.Google Scholar
Luz, C.F.P., Barth, O.M., Martin, L., (1999). Evolução das florestas tropical estacional semidecídua e ombrófila densa durante o Holoceno Médio na região Norte do Rio de Janeiro, baseada em Palinologia. Revista Geociências 4, 7484.Google Scholar
Mahiques, M.M., Souza, L.A., (1999). Shallow seismic reflectors and upper Quaternary sea level changes in the Ubatuba region, São Paulo State, Southeastern Brazil. Brazilian Journal of Oceanography 47, 110.Google Scholar
Mahiques, M., Wainer, I.E.K.C., Burone, L., Nagai, R., Souza, S.H.M., Figueira, R.C.L., Silveira, I.C.A., Bícego, M.C., Hammer, Ø., (2009). A high-resolution Holocene record of the Southern Brazilian shelf. Paeloenvironmental implications. Quaternary International 206, 1–2, 5261.CrossRefGoogle Scholar
Mahiques, M.M., Sousa, S.H. de M., Furatdo, V.V., Tessler, M.G., Toledo, F.A. de L., Burone, L., Figueira, R.C.L., Klein, D.A., Martins, C.C., Alves, D.P.V., (2010). The Southern Brazilian shelf: general characteristics, quaternary evolution and sediment distribution. Brazilian Journal of Oceanography 58, 2534.Google Scholar
Martin, L., Suguio, K., Flexor, J.M., Dominguez, J.M.L., Bittencourt, A.C.S.P., (1996). Quaternary sea-level history and variation in dynamics along the central Brazilian coast: consequences on coastal plain construction. Anais da Academia Brasileira de Ciências 68, 303354.Google Scholar
Martin, L., Bittencourt, A.C.S.P., Dominguez, J.M.L., Flexor, J.M., Suguio, K., (1998). Oscillations or not oscillations, that is the question: Comment on R.J. Angulo and G.C. Lessa. The Brazilian sea-level curves: a critical review with emphasis on the curves from the Paranaguá and Cananéia regions (Marine Geology, 140:141–166). Marine Geology 150, 179187.Google Scholar
Martin, L., Dominguez, J.M.L., Bittencourt, A.C.S.P., (2003). Fluctuating Holocene sea levels in eastern and southeastern Brazil: evidence from multiple fossil and geometric indicators. Journal of Coastal Research 19, 101124.Google Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., Reimer, P.J., (2004). SHCal04 Southern Hemisphere Calibration, 0–11.0 cal kyr BP. Radiocarbon 46, 10871092.Google Scholar
Meyers, P.A., Teranes, J.L., (2001). Sediment Organic Matter. Tracking environmental changes using lake sediment. Last, W.M., Smol, J.P., Physical and Geochemical Methods vol. 2, Kluwer Academic Publishers, Dordrecht. 239269.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162165.Google Scholar
NGRIP – North Greenland Ice Core Project members — North Greenland Ice Core Project members, 2004 High resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147151.Google Scholar
Paduano, G., Bush, M., Baker, P., Fritz, S., Seltzer, G., (2003). The deglaciation of Lake Titicaca (Peru/Bolivia): a vegetation and fire history. Palaeogeography, Palaeoclimatology, Palaeoecology 194, 259279.CrossRefGoogle Scholar
Parizzi, M.G., Salgado-Labouriau, M.L., Kohler, H.C., (1998). Genesis and environmental history of Lagoa Santa: Southeastern Brazil. The Holocene 8, 3, 311321.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, J., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., Stievenard, M., (1999). Climate and Atmospheric History of the Past 420,000 years from the Vostok Ice Core, Antarctica. Nature 399, 429436.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). IntCal04 Terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 10291058.Google Scholar
Rodrigues Filho, S., Behling, H., Irion, G., Muller, G., (2002). Evidence for lake formation as a response to an inferred Holocene climatic transition in Brazil. Quaternary Research 57, 131137.Google Scholar
Rohling, E.J., Pälike, H., (2005). Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434, 975979.Google Scholar
Salinger, M.J., McGlone, M.S., (1990). New Zealand climate: the past two million years. New Zealand Climate Report 1990, Wellington.Google Scholar
Sallun, A.E.M., Suguio, K., (2010). Quaternary colluvial episodes (Upper Paraná River Hydrographic Basin, Brazil). Anais da Academia Brasileira de Ciências 82, 3, 701715.Google Scholar
Salgado-Labouriau, M.L., Barberi, M., Vicentini, K.F., Parizzi, M.G., (1998). A dry climatic event during the late Quaternary of tropical Brazil. Review of Palaeobotany and Palynology 99, 115129.Google Scholar
Scheel-Ybert, R., (2000). Vegetation stability in the Southeastern Brazilian coastal area from 5,500 to 1,400 14C years B.P. deduced from charcoal analysis. Review of Palaeobotany and Palynology 110, 111138.Google Scholar
Seltzer, G.O., Baker, P., Cross, S., Dunbar, R., Fritz, S., (1998). High-resolution seismic reflection profiles from Lake Titicaca, Peru-Bolivia: evidence for Holocene aridity in the tropical Andes. Geology 26, 167170.Google Scholar
Servant, M., Soubiès, F., Suguio, K., Turcq, B., Founier, M., (1989). Alluvial fans in Southern Brazil as evidence for Early Holocene dry climate periods. International Symposium on Global Changes in South America During the Quaternary, S"o Paulo. Special Publication 7577.Google Scholar
Stevaux, J.C., (2000). Climatic events during the Late Pleistocene and Holocene in the Upper Paraná River: correlation with NE Argentina and South-Central Brazil. Quaternary International 72, 7385.Google Scholar
Suguio, K., Martin, L., (1978). Quaternary marine formations of the states of São Paulo and Southern Rio de Janeiro. International Symposium on Coastal Evolution in the Quaternary, São Paulo. Special Publication 1, .Google Scholar
Talma, A.S., Vogel, J.C., (1993). A simplified approach to calibrating C14 dates. Radiocarbon 35, 317322.CrossRefGoogle Scholar
Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Sowers, T.A., Henderson, K.A., Zagorodnov, V.S., Lin, P.-N., Mikhalenko, V.N., Campen, R.K., Bolzan, J.F., Cole-Dai, J., Francou, B., (1998). A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 18581863.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Brecher, H.H., Zadorodnov, V.S., Mashiotta, T.A., Lin, P.N., Mikhalenko, V.N., Hardy, D.R., Beer, J., (2002). Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298, 589593.Google Scholar
Thomas, E.R., Wolff, E.W., Mulvaney, R., Steffensen, J.P., Johnsen, S.J., Arrowsmith, C., White, J.W.C., Vaughn, B., Popp, T., (2007). The 8.2 ka event from Greenland ice cores. Quaternary Science Reviews 26, 1–2, 7081.Google Scholar
Tomazelli, L.J., Villwock, J.A., (1996). Quaternary geological evolution of Rio Grande do Sul coastal plain, southern Brazil. Anais da Academia Brasileira de Ciências 68, 373382.Google Scholar
Tomazelli, L.J., Dillenburg, S.R., Villwock, J.A., (2000). Late Quaternary geological history of Rio Grande do Sul coastal plain, southern Brazil. Revista Brasileira de Geociências 30, 470472.Google Scholar
Villwock, J.A., Tomazelli, L.J., Loss, E.L., Dehnhardt, E.A., Horn, N.O., Bachi, F.A., Dehnhardt, B.A., (1986). Geology of the Rio Grande do Sul Coastal Province. Rabassa, J., Quaternary of South America and Antarctic Peninsula. A.A.Balkema, Rotterdam. 7997.Google Scholar
Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M.J., Dykoski, C.A., Li, X., (2005). The Holocene Asian monsoon: links to solar changes and north Atlantic climate. Science 308, 854857.CrossRefGoogle ScholarPubMed
Wick, L., Tinner, W., (1997). Vegetation changes and timberline fluctuations in the central Alps as indicators of Holocene climatic oscillations. Arctic and Alpine Research 29, 4, 569595.Google Scholar
Whitney, B., Mayle, F.E., Punyasena, K.A., Fitzpatrick, M.J., Burn, M.J., Guillen, R., Chavez, E., Mann, D., Toby Pennington, R., Metcalfe, S.E., (2011). A 45 kyr paleoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 307, 1–4, 177192.Google Scholar
Ybert, J.P., Bissa, W.M., Catharino, E.L.M., Kutner, M., (2003). Environmental and sea-level variations on the southeastern Brazilian coast during the Late Holocene with comments on prehisoric human occupation. Palaeogeography, Palaeoclimatology, Palaeoecology 189, 1124.Google Scholar
Supplementary material: PDF

Sallun et al. Supplementary Material

Supplementary Material

Download Sallun et al. Supplementary Material(PDF)
PDF 492.3 KB