Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-05T09:07:40.927Z Has data issue: false hasContentIssue false

Hydrological changes and paleoproductivity in the Gulf of California during middle and late Holocene and their relationship with ITCZ and North American Monsoon variability

Published online by Cambridge University Press:  20 January 2017

Ligia Pérez-Cruz*
Affiliation:
Instituto de Geofísica, Universidad Nacional Autonoma de Mexico, Laboratorio de Paleoceanografia y Paleoclimas, Programa Universitario de Perforaciones en Océanos y Continentes, Circuito Exterior de Cd. Universitaria S/N, Coyoacan 04510 D.F., Mexico
*
*Fax: + 52 55 5550 9395. E-mail address:perezcruz@geofisica.unam.mx.

Abstract

This study investigates changes in precipitation patterns and variations in paleoproductivity in the tropical Pacific region associated with the North American Monsoon, Intertropical Convergence Zone (ITCZ) latitudinal migration, and changes in insolation during the middle and late Holocene. Major and trace element records (Al, Ba, C, K, Si and Ti) and Zr/Al and Ba/Al ratios in a core from Alfonso Basin, southern Gulf of California, are used as proxies of terrigenous input and bio-productivity. Records reveal an increase in precipitation and low bio-productivity ca. 6200 to 2400 cal yr BP, associated with the strengthening of monsoonal precipitation and northward shift of the ITCZ mean position in the eastern tropical Pacific. A multi-centennial drought from ca. 2400 to 1900 cal yr BP, and a dry and cold interval ca. 700 and 500 cal yr BP, are characterized by strong aeolian input and enhanced productivity, associated with diminution of the summer monsoonal precipitation and reduced insolation in the Northern Hemisphere and more southerly ITCZ position. Correlation of Alfonso Basin records with other records in the Gulf of California and the Pigmy and Cariaco basins in the Gulf of Mexico and central Atlantic provides constraints on NAM, ITCZ migration, and insolation-driven changes.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amador, J.A., Alfaro, E.J., Lizano, O.G., and Magaña, V.O. Atmospheric forcing of the eastern tropical Pacific: a review. Progress in Oceanography 69, (2006). 101142.Google Scholar
Arz, H.W., Patzold, J., and Wefer, G. Correlated millennial-scale changes in surface hydrography and terrigenous sediment yield inferred from last-Glacial marine deposits off Northeastern Brazil. Quaternary Research 50, (1998). 157166.Google Scholar
Badan-Dangon, A., Dorman, C.E., Merrifield, M.A., and Wianat, C.D. The lower atmosphere over the Gulf of California. Journal of Geophysical Research 96, c9 (1991). 1688716896.CrossRefGoogle Scholar
Barron, J.A. Holocene history of the North American monsoon: reconciling terrestrial and marine proxies. American Geophysical Union, Fall Meeting 2009, abstract #PP22B-04. (2009). Google Scholar
Barron, J., Bukry, D., and Bishoff, J. High resolution paleoceanography of the Guaymas Basin, Gulf of California, during the past 15,000 years. Marine Micropaleontology 50, (2004). 185207.Google Scholar
Barron, J.A., Bukry, D., and Dean, W.E. Paleoceanographic history of the Guaymas Basin, Gulf of California, during the past 15,000 years, based on diatoms, silicoflagellates, and biogenic sediments. Marine Micropaleontology 56, (2005). 81102.Google Scholar
Barron, J.A., Metcalfe, S.E., and Addison, J.A. Response of the North America monsoon to regional changes in ocean surface temperature. Paleoceanography 27, (2012). PA3206 http://dx.doi.org/10.1029/2011PA002235Google Scholar
Barry, R., and Chorley, R. Atmosphere, Weather and Climate. 8th edition (2003). Routledge, UK. 421 pp.Google Scholar
Baumgartner, T.R., Ferreira-Bartrina, V., and Moreno-Hentz, P. Varve formation in the central Gulf of California: a reconsideration of the origin of the dark laminae from the 20th century varve record. Dauphin, J.P., and Simoneit, B.R.T. The Gulf and Peninsular Province of the Californias. American Association of Petroleum Geologist Memoir 47, (1991). 617635.Google Scholar
Berger, A., and Loutre, M.F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, (1991). 297317.CrossRefGoogle Scholar
Bordoni, S., and Stevens, B. Principal component analysis of the summertime wind over the Gulf of California: a gulf surge index. Monthly Weather Review 134, (2006). 33953414.Google Scholar
Bordoni, S., Ciesielski, P., Johnson, R., McNoidy, B., and Stevens, B. The low-level circulation of the North American Monsoon as revealed by QuikSCAT. Geophysical Research Letters 31, L10109 (2004). http://dx.doi.org/10.1029/2004GL020009Google Scholar
Bray, N.A., and Robles, J.M. Physical oceanography of the Gulf of California. Simoneit, B., and Dauphin, J. The Gulf and Peninsular Province of the Californias. American Association of Petroleum Geologists, Memoir 47, (1991). 511553.Google Scholar
Cane, M.A. A role for the tropical Pacific. Science 282, (1998). 5960.CrossRefGoogle Scholar
Chiang, C.H. The tropics in paleoclimate. Annual Review of Earth and Planetary Sciences 37, (2009). 263297.Google Scholar
Choumiline, K., Rodríguez-Castañeda, A.P., Silverberg, N., Schumilin, E., Aguirre-Bahena, F., Sapozhnikov, D., and Pérez-Cruz, L. Arsenic and uranium in the settling particulate matter and sediments of Alfonso Basin, La Paz Bay. Birkle, P., and Torres-Alvarado, I. Water Rock Interaction. (2010). Taylor and Francis Group, London. 978-0-415-60426-0 333336.Google Scholar
Clement, A.C., Seager, R., and Cane, M.A. Suppression of El Niño during mid-Holocene by changes in the Earth's orbit. Paleoceanography 15, (2000). 731737.Google Scholar
Clement, A.C., Hall, A., and Broccoli, A.J. The importance of precessional signals in the tropical climate. Climate Dynamics 22, (2004). 327341.Google Scholar
Cobb, K.M., Charles, C.D., Cheng, H., and Edwards, R.L. EL Niño Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424, (2003). 271276. http://dx.doi.org/10.1038/nature01779Google Scholar
Dean, W.E. The geochemical record of the last 17,000 years in the Guaymas Basin, Gulf of California. Chemical Geology 232, (2006). 8798.CrossRefGoogle Scholar
Dean, W.E., and Arthur, M.A. Geochemical expressions of cyclicity in Cretaceous pelagic limestone sequences: Niobrara Formation, Western Interior Seaway. Stratigraphy and paleoenvironments of the Cretaceous Western Interior Seaway, USA. (1998). Society of Economic Paleontologist and Mineralogists Concepts in Sedimentologya and Paleontology, 227255.Google Scholar
Dean, W.E., Gardner, J.C., and Pipers, D.Z. Inorganic geochemical indicators of glacial–interglacial changes in productivity and anoxia on the California continental margin. Geochimica et Cosmochimica Acta 61, 21 (1997). 45074518.Google Scholar
deMenocal, P., Ortiz, J., and Guilderson, T. Coherent high- and low-latitude climate variability during the Holocene warm period. Science 288, (2000). 2198 http://dx.doi.org/10.1126/science.288.5474.2198Google Scholar
Deser, C., and Wallace, J.M. Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. Journal of Climate 3, (1990). 12541281.Google Scholar
Douglas, M.W. The summertime low-level jet over the Gulf of California. Monthly Weather Review 123, (1995). 23342347.Google Scholar
Douglas, M.W., and Leal, J.C. Summertime surges over the Gulf of California: aspects of their climatology, mean structure, and evolution from Radiosonde, NCEP reanalysis, and rainfall data. Weather and Forecasting 18, (2003). 5574.Google Scholar
Douglas, M.W., Valdez-Manzanilla, A., and Cueto, R.G. Diurnal variation and horizontal extent of the low-level jet over the Gulf of California. Monthly Weather Review 127, (1998). 20172025.Google Scholar
Douglas, R., Gonzalez-Yajimovich, O., Ledesma-Vazquez, J., and Staines-Urias, F. Climate forcing, primary production and the distribution of Holocene biogenic sediments in the Gulf of California. Quaternary Science Reviews 26, (2007). 115129.Google Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangiani, A., and Matter, A. Holocene forcing of the Indian monsoon recorded in a stalamite from Southern Oman. Science 300, (2003). 17371739.Google Scholar
Gonzalez-Yajimovich, O.E., (2004). Holocene sedimentation in the southern Gulf of California and its climatic implications. Ph.D. Dissertation, University of Southern California, (232). pp.Google Scholar
Gonzalez-Yajimovich, O., Douglas, R.G., and Gorsline, D.S. The preserved carbonate record in Holocene sediments of the Alfonso and Pescadero basins, Gulf of Califronia, Mexico. Proceedings of the Geologists’ Association 116, (2005). 315330.Google Scholar
Gonzalez-Yajimovich, O.E., Gorsline, D.S., and Douglas, R.G. Frequency and sources of basin floor turbidites in Alfonso Basin, Gulf of California, Mexico Products of slope failures. Sedimentary Geology 199, (2007). 91105.Google Scholar
Govin, A., Holzwarth, U., Heslop, D., Keeling, L.F., Zabel, M., Mulitza, S., Collins, J.A., and Chiessi, C.M. Distribution of major elements in Atlantic surface sediments (36°N–49°S): imprint of terrigenous input and continental weathering. Geochemistry, Geophysics, Geosystems 13, 1 (2012). 123. http://dx.doi.org/10.1029/2011GC003785 (Q01013) Google Scholar
Hastenrath, S. Climate Dynamics of the Tropics. (1991). Kluwer Academic Publishers, Dordrecht. 488 Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., and Röhl, U. Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293, (2001). 13041308.CrossRefGoogle ScholarPubMed
Haug, G.H., Günther, D., Peterson, L.C., Sigman, D.M., Hughen, K.A., and Aeschlimann, B. Climate and the collapse of the Maya civilization. Science 299, (2003). 17311735.Google Scholar
Higgins, R.W., Douglas, A., Hahmann, A., Berbery, E.H., Gutzler, D., Shuttleworth, J., Stensrud, D., Amador, J.A., Carbone, R., Cortez, M., Douglas, M., Lobato, R., Meitin, J., Ropelewski, C., Schemm, J., Schubert, S., and Zhang, C. Progress in Pan American CLIVAR research: the North American Monsoon System. Atmosfera 16, (2003). 2965.Google Scholar
Jaccard, S.L., Haug, G.H., Sigman, D.M., Pedersen, T.F., Thierstein, H.R., and Röhl, U. Glacial/interglacial changes in subarctic North Pacific stratification. Science 308, (2005). 10031006.Google Scholar
Johnson, T.C., Brown, E.T., McManus, J., Barry, S., Barker, P., and Gasse, F. A high-resolution paleoclimate record spanning the past 25,000 years in southern East Africa. Science 296, (2002). 113132.CrossRefGoogle Scholar
Koutavas, A., and Lynch-Stieglitz, J. Glacial–interglacial dynamics of the eastern equatorial-Pacific cold-tongue — Intertropical Convergence Zone system reconstructed from oxygen isotope records. Paleoceanography 18, (2003). http://dx.doi.org/10.1029/2003PA000894Google Scholar
Koutavas, A., and Lynch-Stieglitz, J. Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years. Regional perspective and global context. Diaz, H.F., and Bradley, R.S. The Hadley Circulation: Present Past and Future. (2005). Springer Academic Publishers, 347369.Google Scholar
Koutavas, A., Lynch-Stieglitz, J., Marchitto, T.M. Jr., and Sachs, J.P. El Niño-like patterns in Ice Age tropical sea surface tempearture. Science 297, (2002). 226230.Google Scholar
Kutzbach, J.E., and Liu, A. Response of the African monsoon to orbital forcing and ocean feedbacks in the Middle Holocene. Science 278, (1997). 440443. http://dx.doi.org/10.1126/science.278.5337Google Scholar
Lamy, F., Hebbeln, D., Röhl, U., and Wefer, G. Holocene rainfall variability in southernChile: a marine record of latitudinal shifts of the Southern Westerlies. Earth and Planetary Science Letters 185, (2001). 369382.Google Scholar
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H.W., and Stoner, J. Antarctictiming of surface water changes off Chile and Patagonian ice-sheet response. Science 304, (2004). 19591962.CrossRefGoogle ScholarPubMed
Leduc, G., Vidal, L., Tachikawa, K., and Bard, E. ITCZ rather than ENSO signature for abrupt climate changes across the tropical Pacific?. Quaternary Research 72, (2009). 123131.Google Scholar
López-Martínez, R., (2012). Reconstrucción paleoceanográfica del Holoceno de la Cuenca Alfonso (Golfo de California) mediante el estudio de radiolarios. Bachelor Thesis. Faculty of Science, National University of Mexico, . 96 pp.Google Scholar
Magaña, V. Los Impactos de El Niño en México. (1999). Dirección General de Protección Civil, Secretaría de Gobernación, México. (229 pp.)Google Scholar
McPhaden, M.J. Genesis and evolution of the 1997–98 El Niño. Science 283, (1999). 950954. http://dx.doi.org/10.1126/science.283.5404.950Google Scholar
Metcalfe, S.E., Jones, M.D., Davies, S.J., Noren, A., and MacKenzie, A. Climate variability over the last two millenia in the North American Monsoon region, recorded in laminated lake sediments from Laguna de Juanacatlan, Mexico. The Holocene 1–12, (2010). http://dx.doi.org/10.1177/0959683610371994Google Scholar
Molina-Cruz, A., Pérez-Cruz, L., and Monreal-Gómez, M.A. Laminated sediments in Bay of La Paz, Gulf of California: a depositional cycle regulated by pluvial flux. Sedimentology 49, 6 (2002). 14011410.Google Scholar
Monreal-Gómez, M.A., Molina-Cruz, A., and Salas-de-León, D.A. Water masses and cyclonic circulation in Bay of La Paz, Gulf of California, during June 1998. Journal of Marine Systems 30, (2001). 305315.Google Scholar
Montero-Serrano, J.C., Bout-Roumazeilles, V., Sionneau, T., Tribovillard, N., Bory, A., Flower, B.P., Riboulleau, A., Martinez, P., and Billy, I. Changes in precipitation regimes over North America during the Holocene asrecorded by mineralogy and geochemistry of Gulf of Mexico sediments. Global and Planetary Change 74, (2010). 132143.CrossRefGoogle Scholar
Montero-Serrano, J.C., Bout-Roumazeilles, V., Carlson, A.E., Tribovillard, N., Bory, A., Meunier, G., Sionneau, T., Flower, B.P., Martinez, P., Billy, I., and Riboulleau, A. Contrasting rainfall patterns over North America during the Holocene and Last Intergacial as recorded by sediments of the northern Gulf of Mexico. Geophysical Research Letters 38, (2011). L14709 http://dx.doi.org/10-1029/2011GL0481894Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., and Anderson, D.M. Variability of El Niño/Southern Oscillation activity at millennial time scale during the Holocene epoch. Nature 420, (2002). 162165.Google Scholar
Nava-Sánchez, E., (1997). Modern fan delta of the west coast of the Gulf of California, Mexico. Ph.D. Dissertation, University of Southern California, 229 pp.Google Scholar
Nava-Sánchez, E.H., Gorsline, D.S., Cruz-Orozco, R., and Godínes-Orta, L. El Coyote Fan Delta: a wave-dominated example for the Gulf of California. Quaternary International 56, (1999). 129140.Google Scholar
Nava-Sánchez, E.H., Gorsline, D.S., and Molina-Cruz, A. The Baja California Peninsula Borderland: structural and sedimentological characteristics. Sedimentary Geology 144, (2001). 6382.Google Scholar
Obeso-Nieblas, M., Gaviño-Rodríguez, J.H., Jiménez-Illescas, A.R., and Shirasago-Germán, B. Simulación numérica de la circulación por marea y viento del Noroeste y Sur en la bahía de la Paz, B.C.S. Oceánides 17, 1 (2002). 112.Google Scholar
Pahnke, K., Sachs, J.P., Keigwin, L., Timmermann, A., and Xie, S.-P. Eastern tropical Pacific hydrologic changes during the past 27,000 years from D/H ratios in alkenones. Paleoceanography 22, (2007). PA4214 http://dx.doi.org/10.1029/2007/PA00168Google Scholar
Pavia, E.G., Graef, F., and Reyes, J. PDO–ENSO effects in the climate of Mexico. Journal of Climate 19, (2006). 64336438.Google Scholar
Pérez-Cruz, L. Climate and ocean variability during middle and late Holocene recorded in laminated sediments from Alfonso Basin, Gulf of California, Mexico. Quaternary Research 65, (2006). 401410.Google Scholar
Pérez-Cruz, L., and Urrutia-Fucugauchi, J. Magnetic mineral study of Holocene marine sediments from the Alfonso Basin, Gulf of California — implications for depositional environment and sediment sources. Geofísica Internacional 48, 3 (2009). 305318.Google Scholar
Pérez-Cruz, L., and Urrutia-Fucugauchi, J. Holocene laminated sediments from the southern Gulf of California — Geochemical, Mineral Magnetic and Microfossil Study. Journal of Quaternary Science 25, 6 (2010). 9891000. http://dx.doi.org/10.1002/jqs.1386Google Scholar
Peterson, L.C., and Haug, G.H. Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeography, Palaeoclimatology, Palaeoecology 234, (2006). 97113.CrossRefGoogle Scholar
Peterson, L.C., Haug, G.H., Hughen, K.A., and Röhl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290, (2000). 19471951.Google Scholar
Pike, J., and Kemp, A.E.S. Early Holocene decadal-scale ocean variability recorded in Gulf of California marine sediments. Paleoceanography 12, 2 (1997). 227238.Google Scholar
Poore, R.Z., Quinn, T.M., and Verardo, S. Century-scale movement of the Atlantic Intertropical Convergence Zone linked to solar variability. Geophysical Research Letters 31, (2004). L12214 http://dx.doi.org/10.1029/2004GL019940Google Scholar
Poore, R.Z., Pavich, M.J., and Grissino-Mayer, H.D. Record of the North American southwest monsoon from Gulf of Mexico sediment cores. Geology 33, 3 (2005). 209212. http://dx.doi.org/10.1130/G21040Google Scholar
Ramage, C.S. Monsoon Meteorology. (1971). Academic Press, (296 pp.)Google Scholar
Rodrigo-Gámiz, M., Martínez-Ruiz, F., Jiménez-Espejo, F.J., Gallego-Torres, D., Nieto-Moreno, V., Romero, O., and Ariztegui, D. Impact of climate variability in the western Mediterranean during the last 20,000 years: oceanic and atmospheric responses. Quaternary Science Reviews 30, (2011). 20182034.Google Scholar
Roy, P.D., Jonathan, M.P., Pérez-Cruz, L., Sánchez-Córdoba, M.M., Quiroz-Jiménez, J.D., and Romero, F.M. A millennial-scale late Pleistocene–Holocene paleoclimatic record from western Chihuhua Desert, Mexico. Boreas (2012). http://dx.doi.org/10.1111/j.l502-3885.2012.00266.xGoogle Scholar
Salinas-Gonzalez, F., Zaytsev, O., and Makarov, V. Formation of the termohaline structure of water in the Bahía de la Paz from summer to autumn. Ciencias Marinas 29, 1 (2003). 5165.Google Scholar
Salinas-Zavala, C.A. Sobre la respuesta al Cambio Climático en el noroeste de México. Ciencia 51, (2000). 1118.Google Scholar
Schnetger, B., Brumsack, H.-J., Schale, F., Hinrichs, J., and Ditter, L. Geochemical characteristics of deep-sea sediments from the Arabian Sea: a high-resolution study. Deep Sea Research Part II 47, (2000). 27352768.Google Scholar
Schropp, S.J., Lewis, F.G., Windom, H.L., Ryan, J.D., Calder, F.D., and Burney, L.C. Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries 13, (1990). 227235.Google Scholar
Shimmield, G.B., and Mowbray, S.R. The inorganic geochemical record of the northwest Arabian Sea: a history of productivity variation over the last 400 kyr from Sites 772 and 724. Prell, W.L. et al. Proc. ODP Sci. Results 117, (1991). 409429.Google Scholar
Silverberg, N., Shumilin, E., Aguirre-Bahena, F., Rodríguez-Castañeda, A.P., and Sapozhnikovb, D. The impact of hurricanes on sedimenting particulate matter in the semi-arid Bahia de La Paz, Gulf of California. Continental Shelf Research 27, (2007). 25132522.Google Scholar
Srinivasan, J., and Smith, G. Meridional migration of tropical convergence zones. Journal of Climate 9, (1996). 11891202.Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215 Google Scholar
Thunell, R. Seasonal and annual variability in particle fluxes in the Gulf of California: a response to climatic forcing. Deep Sea Research 45, (1998). 20592083.Google Scholar
Tudhope, A.W., Chilcott, C.P., McCulloch, M.T., Cook, E.R., Chappell, J., Ellam, R.M., Lea, D.W., Lough, J.M., and Shimmield, G.B. Variability in the El Niño-Southern Osclillation through a glacial-interglacial cycle. Science 291, (2001). 15111517.Google Scholar
Waliser, D.E., and Gautier, C. A satellite-derived climatology of the ITCZ. Journal of Climate 6, (1993). 21622174.Google Scholar
Wehausen, R., and Brumsack, H.-J. Cyclic variations in the chemical composition of eastern Mediterranean Pliocene sediments: a key for understanding sapropel formation. Marine Geology 153, (1999). 161176.Google Scholar
Wehausen, R., and Brumsack, H.-J. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments. Earth and Planetary Science Letters 201, (2002). 621636.Google Scholar
Werne, J.P., Sageman, B.B., Lyons, T.W., and Hollander, D.J. An integrated assessment of a “Type Euxinic” deposit: evidence for multiple controls on black shale deposition in the Middle Devonian Otaka Creek Formation. American Journal of Science 302, (2002). 110143.Google Scholar