Skip to main content
×
Home

Identifying environmental drivers of fungal non-pollen palynomorphs in the montane forest of the eastern Andean flank, Ecuador

  • Nicholas J.D. Loughlin (a1) (a2), William D. Gosling (a1) (a2) and Encarni Montoya (a1)
Abstract
Abstract

Samples taken from sedimentary archives indicate that fungal non-pollen palynomorphs (NPPs) can be used to provide information on forest cover, fire regime, and depositional environment in the eastern Andean flank montane forest of Ecuador. Within the 52 samples examined, 54 fungal NPP morphotypes are reported, of which 25 were found to be previously undescribed. Examination of fungal NPPs over a gradient of forest cover (2–64%) revealed three distinct assemblages: (1) low (<8%) forest cover Neurospora, IBB-16, HdV-201, OU-102, and OU-110 indicative of an open degraded landscape; (2) medium (8–32%) forest cover Cercophora-type 1, Xylariaceae, Rosellinia-type, Kretzschmaria deusta, Amphirosellinia, Sporormiella, and Glomus suggestive of a forested landscape disturbed by herbivores and soil erosion; and (3) high (32–63%) forest cover Anthostomella fuegiana, OU-5, OU-101, OU-108, and OU-120. Environmental variables for forest cover (forest pollen), available moisture (aquatic remains), regional fire regime (microcharcoal), and sediment composition (organic carbon) were found to explain ~40% of the variance in the fungal NPP data set. Fire was found to be the primary control on fungal NPP assemblage composition, with available moisture and sediment composition the next most important factors.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Identifying environmental drivers of fungal non-pollen palynomorphs in the montane forest of the eastern Andean flank, Ecuador
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Identifying environmental drivers of fungal non-pollen palynomorphs in the montane forest of the eastern Andean flank, Ecuador
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Identifying environmental drivers of fungal non-pollen palynomorphs in the montane forest of the eastern Andean flank, Ecuador
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
*Corresponding author at: School of Environment, Earth & Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom. E-mail address: nicholas.loughlin@open.ac.uk (N.J.D. Loughlin).
References
Hide All
Allmendinger R.W., Jordan T.E., Kay S.M., Isacks B.L., 1997. The evolution of the Altiplano-Puna Plateau of the central Andes. Annual Review of Earth and Planetary Sciences 25, 139174.
Baker A.G., Bhagwat S.A., Willis K.J., 2013. Do dung fungal spores make a good proxy for past distribution of large herbivores? Quaternary Science Reviews 62, 2131.
Baker A.G., Cornelissen P., Bhagwat S.A., Vera F.W.M., Willis K.J., 2016. Quantification of population sizes of large herbivores and their long-term functional role in ecosystems using dung fungal spores. Methods in Ecology and Evolution 7, 12731281.
Bakker M., van Smeerdijk D.G., 1982. A palaeoecological study of a late Holocene section from “Het Ilperveld”, western Netherlands. Review of Palaeobotany and Palynology 36, 95163.
Bennett K., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132, 155170.
Bennett K.D., 2008. psimpoll and pscomb Programs for Plotting and Analysis, Version 4.27 (accessed March 2, 2014). http://www.chrono.qub.ac.uk/psimpoll/psimpoll.html.
Blackwell M., 2011. The fungi: 1, 2, 3 ... 5.1 million species? American Journal of Botany 98, 426438.
Bronk Ramsey C., Scott M., van der Plicht H., 2013. Calibration for archaeological and environmental terrestrial samples in the time range 26–50 ka cal BP. Radiocarbon 55, 20212027.
Bush M., Silman M.R., Urrego D.H., 2004. 48,000 years of climate and forest change in a biodiversity hotspot. Science 303, 827829.
Campbell J.F.E., Fletcher W.J., Hughes P.D., Shuttleworth E.L., 2016. A comparison of pollen extraction methods confirms dense-media separation as a reliable method of pollen preparation. Journal of Quaternary Science 31, 631640.
Cárdenas M.L., Gosling W.D., Pennington R.T., Poole I., Sherlock S.C., Mothes P., 2014. Forests of the tropical eastern Andean flank during the middle Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 393, 7689.
Colinvaux P.A., Bush M.B., Steinitz-Kannan M., Miller M.C., 1997. Glacial and postglacial pollen records from the Ecuadorian Andes and Amazon. Quaternary Research 48, 6978.
Colinvaux P.A., de Oliveira P.E., Patiño J.E.M., 1999. Amazon Pollen Manual and Atlas. Harwood Academic, Amsterdam.
Coltorti M., Ollier C.D., 2000. Geomorphic and tectonic evolution of the Ecuadorian Andes. Geomorphology 32, 119.
Connell J.H., 1978. Diversity in tropical rain forests and coral reefs. Science 199, 13021310.
Cook K.H., 2009. South American climate variability and change: remote and regional forcing processes. In Vimeaux, F., Sylvestre, F., Khodri, M. (Eds.), Past Climate Variability in South America and Surrounding Regions. Springer, Dordrecht, the Netherlands, pp. 193212.
Cugny C., Mazier F., Galop D., 2010. Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Vegetation History and Archaeobotany 19, 391408.
Davis O.K., 1987. Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction. Quaternary Research 28, 290294.
Davis O.K., Shafer D.S., 2006. Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeography, Palaeoclimatology, Palaeoecology 237, 4050.
Faegri K., Iversen J., 1989. Textbook of Pollen Analysis. 4th ed.. Blackburn Press, Caldwell, NJ.
Flantua S.G.A., Hooghiemstra H., Grimm E.C., Behling H., Bush M.B., González-Arango C., Gosling W.D., et al. 2015. Updated site compilation of the Latin American Pollen Database. Review of Palaeobotany and Palynology 223, 104115.
Galeas R., Guevara J.E., 2012. Sistema de clasificación de los Ecosistemas del Ecuador Continental. Subsecretaría de Patrimonio Natural, Quito, Ecuador.
Gelorini V., Verbeken A., van Geel B., Cocquyt C., Verschuren D., 2011. Modern non-pollen palynomorphs from East African lake sediments. Review of Palaeobotany and Palynology 164, 143173.
Gentry A.H., 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75, 134.
Gentry A.H., 1995. Patterns of diversity and floristic composition in Neotropical montane forests. In Churchill, S.P., Balslev, H., Forero, E., Luteyn, J.L. (Eds.), Biodiversity and Conservation of Neotropical Montane Forests. New York Botanical Garden, New York, pp. 103126.
Gill J.L., McLauchlan K.K., Skibbe A.M., Goring S., Zirbel C.R., Williams J.W., 2013. Linking abundances of the dung fungus Sporormiella to the density of bison: implications for assessing grazing by megaherbivores in palaeorecords. Journal of Ecology 101, 11251136.
Gill J.L., Williams J.W., Jackson S.T., Lininger K.B., Robinson G.S., 2009. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 11001103.
González-Carranza Z., Hooghiemstra H., Vélez M.I., 2012. Major altitudinal shifts in Andean vegetation on the Amazonian flank show temporary loss of biota in the Holocene. Holocene 22, 12271241.
Grabandt R., 1990. Presence and ecological range of some algae, Testacea and fungal remains in moss samples of Colombian páramo vegetation. Quaternary of South America and Antarctic Peninsula 8, 85105.
Graham A., 2009. The Andes: a geological overview from a biological perspective. Annals of the Missouri Botanical Garden 96, 371385.
Graham G.L., 1983. Changes in bat species diversity along an elevational gradient up the Peruvian Andes. Journal of Mammalogy 64, 559571.
Hall M.L., Samaniego P., Le Pennec J.L., Johnson J.B., 2008. Ecuadorian Andes volcanism: a review of Late Pliocene to present activity. Journal of Volcanology and Geothermal Research 176, 16.
Harling G., 1979. The vegetation types of Ecuador—a brief survey. In Larsen, K., Holm-Nielsen, L.B. (Eds.), Tropical Botany. Academic Press, London, pp. 165174.
Hawksworth D.L., 2012. Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodiversity and Conservation 21, 24252433.
Heiri O., Lotter A.F., Lemcke G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.
Hooghiemstra H., 1984. Vegetational and climatic history of the high plain of Bogotá, Colombia: a continuous record of the last 3.5 million years. Dissertationes Botanicae 79, 1138.
Hooghiemstra H., van der Hammen T., 1993. Late quaternary vegetation history and paleoecology of Laguna Pedro Palo (subandean forest belt, Eastern Cordillera, Colombia). Review of Palaeobotany and Palynology 77, 235262.
Hooper D.U., Bignell D.E., Brown V.K., Brussaard L., Dangerfield M.J., Wall D.H., Wardle D.A., et al. 2000. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. BioScience 50, 10491061.
Hoorn C., Wesselingh F.P., ter Steege H., Bermudez M.A., Mora A., Sevink J., Sanmartín I., et al. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927931.
Innes J., Blackford J., Simmons I., 2010. Woodland disturbance and possible land-use regimes during the Late Mesolithic in the English uplands: pollen, charcoal and non-pollen palynomorph evidence from Bluewath Beck, North York Moors, UK. Vegetation History and Archaeobotany 19, 439452.
Jacobson D.J., Dettman J.R., Adams R.I., Boesl C., Sultana S., Roenneberg T., Merrow M., et al. 2006. New findings of Neurospora in Europe and comparisons of diversity in temperate climates on continental scales. Mycologia 98, 550559.
Jørgensen P.M., León-Yánez S., 1999. Catálogo de las plantas vasculares del Ecuador. Monographs in Systematic Botany from the Missouri Botanical Garden 75. Missouri Botanical Garden Press, St. Louis, MO.
Ju Y.-M., Rogers J.D., Hsieh H.-M., Vasilyeva L., 2004. Amphirosellinia gen. nov. and a new species of Entoleuca . Mycologia 96, 13931402.
Juggins S., 2007. C2 Version 1.5 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation. Newcastle University, Newcastle upon Tyne, UK.
Juggins S., Birks H.J.B., 2012. Quantitative environmental reconstructions from biological data. In Birks, H.J.B., Lotter, A.F., Juggins, S., Smol, J.P. (Eds.), Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques. Springer, Dordrecht, the Netherlands, pp. 431494.
Killeen T.J., Douglas M., Consiglio T., Jørgensen P.M., Mejia J., 2007. Dry spots and wet spots in the Andean hotspot. Journal of Biogeography 34, 13571373.
Kuhry P., 1985. Transgression of a raised bog across a coversand ridge originally covered with an oak–lime forest: palaeoecological study of a middle Holocene local vegetational succession in the Amtsven (northwest Germany). Review of Palaeobotany and Palynology 44, 303353.
Kuhry P., 1988. A paleobotanical and palynological study of Holocene peat from the El Bosque mire, located in a volcanic area of the Cordillera Central of Colombia. Review of Palaeobotany and Palynology 55, 1972.
Livingstone D.A., 1955. A lightweight piston sampler for lake sediments. Ecology 36, 137139.
López-Sáez J.A., López-Merino L., 2007. Coprophilous fungi as a source of information of anthropic activities during the Prehistory in the Amblés Valley (Ávila, Spain): the archaeopalynological record. Revista Española de Micropaleontología 39, 103116.
López-Vila J., Montoya E., Canellas-Bolta N., Rull V., 2014. Modern non-pollen palynomorphs sedimentation along an elevational gradient in the south-central Pyrenees (southwestern Europe) as a tool for Holocene paleoecological reconstruction. Holocene 24, 327345.
MacArthur R.H., 1969. Patterns of communities in the tropics. Biological Journal of the Linnean Society 1, 1930.
Matthews-Bird F., Brooks S.J., Holden P.B., Montoya E., Gosling W.D., 2016a. Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model. Climate of the Past 12, 12631280.
Matthews‐Bird F., Gosling W.D., Coe A.L., Bush M., Mayle F.E., Axford Y., Brooks S.J., 2016b. Environmental controls on the distribution and diversity of lentic Chironomidae (Insecta: Diptera) across an altitudinal gradient in tropical South America. Ecology and Evolution 6, 91112.
Montoya E., Rull V., van Geel B., 2010. Non-pollen palynomorphs from surface sediments along an altitudinal transect of the Venezuelan Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 169183.
Montoya E., Rull V., Vegas-Vilarrúbia T., 2012. Non-pollen palynomorph studies in the Neotropics: the case of Venezuela. Review of Palaeobotany and Palynology 186, 102130.
Moore P.D., Webb J.A., Collinson M.E., 1991. Pollen Analysis. Blackwell Scientific, Oxford, UK.
Moscol-Olivera M., Duivenvoorden J.F., Hooghiemstra H., 2009. Pollen rain and pollen representation across a forest-páramo ecotone in northern Ecuador. Review of Palaeobotany and Palynology 157, 285300.
Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., Kent J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853858.
Neill D.A., 1999aGeology. In Jørgensen, P.M., León-Yánez, S. (Eds.), Catalogue of the Vascular Plants of Ecuador. Missouri Botanical Garden Press, St. Louis, MO, pp. 57.
Neill D.A., 1999bVegetation. In Jørgensen, P.M., León-Yánez, S. (Eds.), Catalogue of the Vascular Plants of Ecuador. Missouri Botanical Garden Press, St. Louis, MO, pp. 1325.
Neill D.A., Jørgensen P.M., 1999. Climates. In Jørgensen, P.M., León-Yánez, S. (Eds.), Catalogue of the Vascular Plants of Ecuador. Missouri Botanical Garden Press, St. Louis, MO, pp. 813.
Neill D.A., Palacios W.A., 1997. Gran Sumaco and Upper Napo River region, Ecuador. In Davis, S.D., Heywood, V.H., Herrera-MacBryde, O., Villa-Lobos, J., Hamilton, A.C. (Eds.), Centres of Plant Diversity: A Guide and Strategy for Their Conservation Vol. 3. The Americas. IUCN, Cambridge, UK, pp. 496500.
Niemann H., Behling H., 2008. Late Quaternary vegetation, climate and fire dynamics inferred from the El Tiro record in the southeastern Ecuadorian Andes. Journal of Quaternary Science 23, 203212.
Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., Simpson G.L., et al. 2016. vegan: Community Ecology Package. Version 2.3-5 (accessed August 8, 2016). https://cran.r-project.org/web/packages/vegan/index.html.
Peay K.G., Baraloto C., Fine P.V.A., 2013. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME Journal 7, 18521861.
Rademaker K., Hodgins G., Moore K., Zarrillo S., Miller C., Bromley G.R.M., Leach P., Reid D.A., Álvarez W.Y., Sandweiss D.H., 2014. Paleoindian settlement of the high-altitude Peruvian Andes. Science 346, 466469.
Raper D., Bush M., 2009. A test of Sporormiella representation as a predictor of megaherbivore presence and abundance. Quaternary Research 71, 490496.
R Development Core Team. 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.
Rull V., 2006. A high mountain pollen-altitude calibration set for palaeoclimatic use in the tropical Andes. Holocene 16, 105117.
Rull V., López-Sáez J.A., Vegas-Vilarrúbia T., 2008. Contribution of non-pollen palynomorphs to the paleolimnological study of a high-altitude Andean lake (Laguna Verde Alta, Venezuela). Journal of Paleolimnology 40, 399411.
Rull V., Vegas-Vilarrúbia T., 1998. Palynomorphs other than pollen and fern spores in glacial sediments from the Venezuelan Andes. Preliminary assessment on their potential paleoecological value. Boletín de la Sociedad Venezolana de Geólogos 23, 527.
Rull V., Vegas-Vilarrúbia T., 1999. Surface palynology of a small coastal basin from Venezuela and potential paleoecological applications. Micropaleontology 45, 365393.
Sierra R., 1999. Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador continental. Proyecto INEFAN/GEF-BIRF y EcoCiencia, Quito, Ecuador.
Stern M.J., 1995. Vegetation reorganisation on earthquake-triggered landslide sites in the Ecuadorian Andes. In: Churchill, S.P., Balslev, H., Forrero, E., Luteyn, J.L. (Ed.), Biodiversity and Conservation of Neotropical Montane Forests: Proceedings of the Neotropical Montane Forest Biodiversity and Conservation Symposium, the New York Botanical Garden, 21-26 June 1993. New York Botanical Garden Press, New York, p. 93.
Stevens G.C., 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. American Naturalist 133, 240256.
Stockmarr J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 16, 615621.
Tedersoo L., Bahram M., Põlme S., Kõljalg U., Yorou N.S., Wijesundera R., Ruiz L.V., et al. 2014. Global diversity and geography of soil fungi. Science 346. 1256688. http://dx.doi.org/10.1126/science.1256688.
Terborgh J., 1977. Bird species diversity on an Andean elevational gradient. Ecology 58, 10071019.
ter Braak C.J.F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 11671179.
Urrego D.H., Silman M.R., Bush M.B., 2005. The Last Glacial Maximum: stability and change in a western Amazonian cloud forest. Journal of Quaternary Science 20, 693701.
Valencia R., Cerón C., Palacios W.P., Sierra R., 1999. Las formaciones naturales de la sierra del Ecuador. In: Sierra, R.M. (Ed.), Propuesta Preliminar de Un Sistema de Clasificación de Vegetación Para El Ecuador Continental. Proyecto INEFAN/GEF-GIRF y EcoCiencia, Quito, Ecuador, pp. 82111.
van Geel B., 1972. Palynology of a section from the raised peat bog ‘Wietmarscher Moor’, with special reference to fungal remains. Acta Botanica Neerlandica 21, 261284.
van Geel B., 1976. Fossil spores of Zygnemataceae in ditches of a pre-historic settlement in Hoogkarspel (the Netherlands). Review of Palaeobotany and Palynology 22, 337344.
van Geel B., 1978. A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Review of Palaeobotany and Palynology 25, 1120.
van Geel B., Andersen S.T., 1988. Fossil ascopores of the parasitic fungus Ustulina deusta in Eemian deposits in Denmark. Review of Palaeobotany and Palynology 56, 8993.
van Geel B., Aptroot A., 2006. Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82, 313329.
van Geel B., Aptroot A., Baittinger C., Birks H.H., Bull I.D., Cross H.B., Evershed R.P., et al. 2008. The ecological implications of a Yakutian mammoth’s last meal. Quaternary Research 69, 361376.
van Geel B., Bohncke S.J.P., Dee H., 1981. A palaeoecological study of an upper late glacial and Holocene sequence from “De Borchert”, the Netherlands. Review of Palaeobotany and Palynology 31, 367448.
van Geel B., Buurman J., Brinkkemper O., Schelvis J., Aptroot A., van Reenen G., Hakbijl T., 2003. Environmental reconstruction of a Roman Period settlement site in Uitgeest (the Netherlands), with special reference to coprophilous fungi. Journal of Archaeological Science 30, 873883.
van Geel B., Coope G.R., van Der Hammen T., 1989. Palaeoecology and stratigraphy of the lateglacial type section at Usselo (the Netherlands). Review of Palaeobotany and Palynology 60, 25129.
van Geel B., Engels S., Martin-Puertas C., Brauer A., 2013. Ascospores of the parasitic fungus Kretzschmaria deusta as rainstorm indicators during a late Holocene beech-forest phase around lake Meerfelder Maar, Germany. Journal of Paleolimnology 50, 3340.
van Geel B., Gelorini V., Lyaruu A., Aptroot A., Rucina S., Marchant R., Damsté J.S.S., Verschuren D., 2011a. Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Review of Palaeobotany and Palynology 164, 174190.
van Geel B., Guthrie R.D., Altmann J.G., Broekens P., Bull I.D., Gill F.L., Jansen B., Nieman A.M., Gravendeel B., 2011b. Mycological evidence of coprophagy from the feces of an Alaskan Late Glacial mammoth. Quaternary Science Reviews 30, 22892303.
van Geel B., Hallewas D.P., Pals J.P., 1983. A late Holocene deposit under the Westfriese Zeedijk near Enkhuizen (Prov. of Noord-Holland, the Netherlands): palaeoecological and archaeological aspects. Review of Palaeobotany and Palynology 38, 269335.
van Smeerdijk D.G., 1989. A palaeoecological and chemical study of a peat profile from the Assendelver Polder (the Netherlands). Review of Palaeobotany and Palynology 58, 231288.
Vera R., 2013. Geology of Ecuador: An Introduction to the Unique Geology of Ecuador. Gráficas Iberia, Quito, Ecuador.
Vuille M., Bradley R.S., Keimig F., 2000. Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research: Atmospheres 105, 1244712460.
Wallace A.R., 1878. Tropical Nature and Other Essays. Macmillan, New York.
Webster G.L., 1995. The panorama of Neotropical cloud forests. In: Churchill, S.P., Balslev, H., Forero, E., Luteyn, J.L. (Eds.), Biodiversity and Conservation of Neotropical Montane Forests. New York Botanical Garden, New York, pp. 5377.
Weng C., Bush M.B., Silman M.R., 2004. An Analysis of Modern Pollen Rain on an Elevational Gradient in Southern Peru. Journal of Tropical Ecology 20, 113124.
Whitlock C., Larsen C., 2001. Charcoal as a fire proxy. In: Smol, J.P., Birks, H.J.B., Last, W.M. (Eds.), Tracking Environmental Change Using Lake Sediment Vol. 3. Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic, Dordrecht, the Netherlands, pp. 7597.
Williams J.J., Gosling W.D., Coe A.L., Brooks S.J., Gulliver P., 2011. Four thousand years of environmental change and human activity in the Cochabamba Basin, Bolivia. Quaternary Research 76, 5868.
Wilmshurst J.M., McGlone M.S., 2005. Origin of pollen and spores in surface lake sediments: comparison of modern palynomorph assemblages in moss cushions, surface soils and surface lake sediments. Review of Palaeobotany and Palynology 136, 115.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quaternary Research
  • ISSN: 0033-5894
  • EISSN: 1096-0287
  • URL: /core/journals/quaternary-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary Materials

Loughlin et al supplementary material
Appendix A and B

 Word (25 KB)
25 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 13
Total number of PDF views: 93 *
Loading metrics...

Abstract views

Total abstract views: 89 *
Loading metrics...

* Views captured on Cambridge Core between 5th October 2017 - 18th November 2017. This data will be updated every 24 hours.