Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T15:47:11.267Z Has data issue: false hasContentIssue false

Intensified mid-Holocene Asian monsoon recorded in corals from Kikai Island, subtropical northwestern Pacific

Published online by Cambridge University Press:  20 January 2017

Maki Morimoto*
Affiliation:
Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
Hajime Kayanne
Affiliation:
Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033, Japan
Osamu Abe
Affiliation:
Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
Malcolm T. McCulloch
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
*
Corresponding author. Fax: +81 52 788 6206. E-mail address:maki.morimoto@nagoya-u.jp (M. Morimoto).

Abstract

Coupled records of Sr/Ca and oxygen isotope ratios (δ18O) of coral skeletons have been used to produce quantitative estimates of paleo-sea surface temperature (SST) and δ18O of surface seawater that can in some cases be converted to sea surface salinity (SSS). Two fossil corals from Kikai Island in the subtropical northwestern Pacific, a location affected by East Asian summer and winter monsoons, were analyzed to investigate differences between mid-Holocene and present-day SST and SSS. At 6180 cal yr BP, SSTs were roughly the same as today, both in summer and winter; δ18Oseawater and SSS values were higher both in summer (+ 0.5‰, +1.1 psu) and in winter (+ 0.2‰, + 0.6 psu) than modern values. At 7010 cal yr BP, SSTs were slightly cooler both in summer and winter (−0.8 and −0.6 °C), whereas δ18Oseawater and SSS had higher values in summer (+ 0.3‰, + 0.6 psu) and in winter (+ 0.8‰, + 1.9 psu) than present-day values. These results are consistent with other marine records for the mid-Holocene of the low and midlatitudes in the northwestern Pacific. Such regional conditions indicate that the East Asian summer and winter monsoons were more intense in the mid-Holocene, which was likely a function of the mid-Holocene insolation regime.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abram, N.J., Webster, J.M., Davies, P.J., and Dullo, W.C. Biological response of coral reefs to sea surface temperature variation: evidence from the raised Holocene reefs of Kikai-jima (Ryukyu Islands Japan). Coral Reefs 20, (2001). 221234.Google Scholar
Alibert, C., and McCulloch, M.T. Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: calibration of the thermometer and monitoring of ENSO. Paleoceanography 12, (1997). 345363.CrossRefGoogle Scholar
An, Z. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, (2000). 171187.CrossRefGoogle Scholar
An, Z., Porter, S.C., Kutzbach, J.E., Wu, X., Wang, S., Liu, X., Li, X., and Zhou, W. Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Reviews 19, (2000). 743762.CrossRefGoogle Scholar
Beck, J.W., Edwards, R.L., Ito, E., Taylor, F.W., Recy, J., Rougerie, F., Joannot, P., and Henin, C. Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257, (1992). 644647.Google Scholar
Berger, A., and Loutre, M.F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, (1991). 297317.Google Scholar
Braconnot, P., Marti, O., Joussaume, S., and Leclainche, Y. Ocean feedback in response to 6 kyr BP insolation. Journal of Climate 13, (2000). 15371553.2.0.CO;2>CrossRefGoogle Scholar
Corrège, T. Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeography, Palaeoclimatology, Palaeoecology 232, (2006). 408428.CrossRefGoogle Scholar
Corrège, T., Delcroix, T., Récy, J., Beck, W., Cabioch, G., and Le Cornec, F. Evidence for stronger El Niño-Southern Oscillation (ENSO) events in a mid-Holocene massive coral. Paleoceanography 15, (2000). 465470.CrossRefGoogle Scholar
Dodson, J.R., and Ono, Y. Timing of late Quaternary vegetation response in the 30–50 degrees latitude bands in southeastern Australia and northeastern Asia. Quaternary International 37, (1997). 89104.CrossRefGoogle Scholar
Fairbanks, R.G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, (1989). 637642.Google Scholar
Fallon, S.J., McCulloch, M.T., van Woesik, R., and Sinclair, D.J. Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth and Planetary Science Letters 172, (1999). 221238.CrossRefGoogle Scholar
Gagan, M.K., Ayliffe, L.K., Hopley, D., Cali, J.A., Mortimer, G.E., Chappell, J., McCulloch, M.T., and Head, M.J. Temperature and surface–ocean water balance of the mid-Holocene tropical western Pacific. Science 279, (1998). 10141018.CrossRefGoogle ScholarPubMed
Gagan, M.K., Ayliffe, L.K., Beck, J.W., Cole, J.E., Druffel, E.R.M., Dunbar, R.B., and Schrag, D.P. New views of tropical paleoclimates from corals. Quaternary Science Reviews 19, (2000). 4564.Google Scholar
Gong, D.-Y., Wang, S.-W., and Zhu, J.-H. East Asian winter monsoon and Arctic Oscillation. Geophysical Research Letters 28, (2001). 20732076.CrossRefGoogle Scholar
Harrison, S.P., Yu, G., and Tarasov, P.E. Late Quaternary lake-level record from northern Eurasia. Quaternary Research 45, (1996). 138159.Google Scholar
Hendy, E.J., Gagan, M.K., Alibert, C.A., McCulloch, M.T., Lough, J.M., and Isdale, P.J. Abrupt decrease in tropical Pacific sea surface salinity at end of Little Ice Age. Science 295, (2002). 15111514.Google Scholar
Hewitt, C.D., and Mitchell, J.F.B. GCM simulations of the climate of 6 kyr BP: mean changes and interdecadal variability. Journal of Climate 9, (1996). 35053529.2.0.CO;2>CrossRefGoogle Scholar
Hsu, H.-H., Chen, Y.-L., and Kau, W.-S. Effects of atmosphere–ocean interaction on the interannual variability of winter temperature in Taiwan and East Asia. Climate Dynamics 17, (2001). 305316.Google Scholar
Huntley, B., and Prentice, I.C. July temperatures in Europe from pollen data, 6000 years before present. Science 241, (1988). 687690.Google Scholar
Joussaume, S., Taylor, K.E., Braconnot, P., Mitchell, J.F.B., Kutzbach, J.E., Harrison, S.P., Prentice, I.C., Broccoli, A.J., Abe-Ouchi, A., Bartlein, P.J., Bonfils, C., Dong, B., Guiot, J., Herterich, K., Hewitt, C.D., Jolly, D., Kim, J.W., Kislov, A., Kitoh, A., Loutre, M.F., Masson, V., McAvaney, B., McFarlane, N., de Noblet, N., Peltier, W.R., Peterschmitt, J.Y., Pollard, D., Rind, D., Royer, J.F., Schlesinger, M.E., Syktus, J., Thompson, S., Valdes, P., Vettoretti, G., Webb, R.S., and Wyputta, U. Monsoon changes for 6000 years ago: results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophysical Research Letters 26, (1999). 859862.CrossRefGoogle Scholar
Juillet-Leclerc, A., and Schmidt, G. A calibration of the oxygen isotope paleothermometer of coral aragonite from Porites . Geophysical Research Letters 28, (2001). 41354138.Google Scholar
Kalis, A.J., Merkt, J., and Wunderlich, J. Environmental changes during the Holocene climatic optimum in central Europe—Human impact and natural causes. Quaternary Science Reviews 22, (2003). 3379.Google Scholar
Kaufman, D.S., Ager, T.A., Anderson, N.J., Anderson, P.M., Andrews, J.T., Bartlein, P.J., Brubaker, L.B., Coats, L.L., Cwynar, L.C., Duvall, M.L., Dyke, A.S., Edwards, M.E., Eisner, W.R., Gajewski, K., Geirsdottir, A., Hu, F.S., Jennings, A.E., Kaplan, M.R., Kerwin, M.N., Lozhkin, A.V., MacDonald, G.M., Miller, G.H., Mock, C.J., Oswald, W.W., Otto-Bliesner, B.L., Porinchu, D.F., Ruhland, K., Smol, J.P., Steig, E.J., and Wolfe, B.B. Holocene thermal maximum in the western Arctic (0–180° W). Quaternary Science Reviews 23, (2004). 529560.CrossRefGoogle Scholar
Kayanne, H., (1989). Development of Holocene fringing reefs in Ryukyu and Mariana Islands. PhD dissertation. The University of Tokyo, Tokyo, Japan. (in Japanese with English abstract).Google Scholar
Kerwin, M.W., Overpeck, J.T., Webb, R.S., DeVernal, A., Rind, D.H., and Healy, R.J. The role of oceanic forcing in mid-Holocene Northern Hemisphere climatic change. Paleoceanography 14, (1999). 200210.CrossRefGoogle Scholar
Kim, J.H., Rimbu, N., Lorenz, S.J., Lohmann, G., Nam, S.I., Schouten, S., Rühlemann, C., and Schneider, R.R. North Pacific and North Atlantic sea-surface temperature variability during the Holocene. Quaternary Science Reviews 23, (2004). 21412154.Google Scholar
Kitoh, A., and Murakami, S. Tropical Pacific climates at the mid-Holocene and the Last Glacial Maximum simulated by a coupled ocean–atmosphere general circulation model. Paleoceanography 17, (2002). 1047 http://dx.doi.org/10.1029/2001PA000724Google Scholar
Kutzbach, J., Gallimore, R., Harrison, S., Behling, P., Selin, R., and Laarif, F. Climate and biome simulations for the past 21,000 years. Quaternary Science Reviews 17, (1998). 473506.CrossRefGoogle Scholar
Lau, K.-M., Yang, G.J., and Shen, S.H. Seasonal and intraseasonal climatology of summer monsoon rainfall over East-Asia. Monthly Weather Review 116, (1988). 1837.2.0.CO;2>CrossRefGoogle Scholar
Liu, Z.Y., Kutzbach, J., and Wu, L. Modeling climate shift of El Niño variability in the Holocene. Geophysical Research Letters 27, (2000). 22652268.Google Scholar
Marshall, J.F., and McCulloch, M.T. An assessment of the Sr/Ca ratio in shallow water hermatypic coral as a proxy for sea surface temperature. Geochimica et Cosmochimica Acta 66, (2002). 32633280.Google Scholar
McCulloch, M.T., Gagan, M.K., Mortimer, G.E., Chivas, A.R., and Isdale, P.J. A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982–1983 El-Niño. Geochimica et Cosmochimica Acta 58, (1994). 27472754.CrossRefGoogle Scholar
Morimoto, M., Kayanne, H., Yonekura, N., Abe, O., and Matsumoto, E. Effect of seasonal difference in growth rate of coral skeletons on oxygen isotope records. Matsumoto, E. Proceedings of Third International Marine Science Symposium on Coral Climatology by Annual Bands. (1998). Japan Marine Science Foundation, Tokyo, Japan. 3034.Google Scholar
Morimoto, M., Abe, O., Kayanne, H., Kurita, N., Matsumoto, E., and Yoshida, N. Salinity records for the 1997–98 El Niño from Western Pacific corals. Geophysical Research Letters 29, (2002). 1540 http://dx.doi.org/10.1029/2001GL013521CrossRefGoogle Scholar
Nakada, Y. Appearance of stratiform clouds over south China and their relation to synoptic fields during the winter monsoon season. Geographical Review of Japan 64A, (1991). 327346. (in Japanese with English abstract) CrossRefGoogle Scholar
Prentice, I.C., Jolly, D. BIOME 6000 participants Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. Journal of Biogeography 27, (2000). 507519.CrossRefGoogle Scholar
Quinn, T.M., and Sampson, D.E. A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Paleoceanography 17, (2002). 1062 http://dx.doi.org/10.1029/2000PA000528Google Scholar
Ruddiman, W.F. Earth's Climate: Past and Future. (2001). W.H. Freeman and Co, New York.Google Scholar
Sakaguchi, Y. Warm and cold stages in the past 7600 years in Japan and their global correlation—Especially on climatic impacts to the global sea level changes and the ancient Japanese history. Bulletin of the Department of Geography, University of Tokyo 15, (1983). 131.Google Scholar
Schmidt, G.A. Oxygen-18 variations in a global ocean model. Geophysical Research Letters 25, (1998). 12011204.CrossRefGoogle Scholar
Schmidt, G.A. Error analysis of paleosalinity calculations. Paleoceanography 14, (1999). 422429.Google Scholar
Schmidt, G.A., Shindell, D.T., Miller, R.L., Mann, M.E., and Rind, D. General circulation modelling of Holocene climate variability. Quaternary Science Reviews 23, (2004). 21672181.Google Scholar
Shen, C.C., Lee, T., Liu, K.K., Hsu, H.H., Edwards, R.L., Wang, C.H., Lee, M.Y., Chen, Y.G., Lee, H.J., and Sun, H.T. An evaluation of quantitative reconstruction of past precipitation records using coral skeletal Sr/Ca and δ18O data. Earth and Planetary Science Letters 237, (2005). 370386.CrossRefGoogle Scholar
Stoll, H.M., and Schrag, D.P. Effects of Quaternary sea level cycles on strontium in seawater. Geochimica et Cosmochimica Acta 62, (1998). 11071118.Google Scholar
Stott, L., Cannariato, K., Thunell, R., Haug, G.H., Koutavas, A., and Lund, S. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431, (2004). 5659.CrossRefGoogle ScholarPubMed
Street-Perrott, F.A., and Perrot, R.A. Holocene vegetation, lake levels, and climate of Africa. Wright, H.E. Jr., Kutzbach, J.E., Webb, T. III, Ruddiman, W.F., Street-Perrott, F.A., and Bartlein, P.J. Global Climates Since the Last Glacial Maximum. (1993). University of Minnesota Press, Minneapolis and London. 318356.Google Scholar
Stuiver, M., Pearson, G.W., and Braziunas, T. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28, (1986). 9801021.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., and Braziunas, T.F. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40, (1998). 11271151.CrossRefGoogle Scholar
Sugihara, K., Nakamori, T., Iryu, Y., Sasaki, K., and Blanchon, P. Holocene sea-level change and tectonic uplift deduced from raised reef terraces, Kikai-jima, Ryukyu Islands, Japan. Sedimentary Geology 159, (2003). 525.CrossRefGoogle Scholar
Sun, Y., Oppo, D.W., Xiang, R., Liu, W., and Gao, S. Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography 20, (2005). PA4005 http://dx.doi.org/10.1029/2004PA001061CrossRefGoogle Scholar
Vettoretti, G., Peltier, W.R., and McFarlane, N.A. Simulations of mid-Holocene climate using an atmospheric general circulation model. Journal of Climate 11, (1998). 26072627.2.0.CO;2>CrossRefGoogle Scholar
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., and Pflaumann, U. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology 156, (1999). 245284.Google Scholar
Weber, J.N., and Woodhead, P.M.J. Temperature dependence of oxygen-18 concentration in reef coral carbonates. Journal of Geophysical Research 77, (1972). 463473.CrossRefGoogle Scholar
Webster, J.M., Davies, P.J., and Konishi, K. Model of fringing reef development in response to progressive sea level fall over the last 7000 years—(Kikai-jima, Ryukyu Islands, Japan). Coral Reefs 17, (1998). 289308.CrossRefGoogle Scholar
Xiao, J., Nakamura, T., Lu, H., and Zhang, G. Holocene climate changes over the desert/loess transition of north-central China. Earth and Planetary Science Letters 197, (2002). 1118.Google Scholar
Yu, G., and Harrison, S.P. An evaluation of the simulated water balance of Eurasia and northern Africa at 6000 y BP using lake status data. Climate Dynamics 12, (1996). 723735.CrossRefGoogle Scholar
Yu, K.F., Zhao, J.X., Liu, T.S., Wei, G.H., Wang, P.X., and Collerson, K.D. High-frequency winter cooling and reef coral mortality during the Holocene climatic optimum. Earth and Planetary Science Letters 224, (2004). 143155.CrossRefGoogle Scholar
Yu, K.F., Zhao, J.X., Wei, G.J., Cheng, X.R., and Wang, P.X. Mid–late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsula, northern coast of South China Sea. Global and Planetary Change 47, (2005). 301316.Google Scholar