Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T06:38:32.685Z Has data issue: false hasContentIssue false

A late Holocene molecular hydrogen isotope record of the East Asian Summer Monsoon in Southwest Japan

Published online by Cambridge University Press:  20 January 2017

Els E. van Soelen*
Affiliation:
Utrecht University, Faculty of Geosciences, Department of Earth Sciences, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands
Naohiko Ohkouchi
Affiliation:
Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
Hisami Suga
Affiliation:
Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
Jaap S. Sinninghe Damsté
Affiliation:
Utrecht University, Faculty of Geosciences, Department of Earth Sciences, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
Gert-Jan Reichart
Affiliation:
Utrecht University, Faculty of Geosciences, Department of Earth Sciences, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands NIOZ Royal Netherlands Institute for Sea Research, Department of Ocean Systems, Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
*
*Corresponding author. Present address: Department of Geosciences, University of Oslo, P.O. Box 1047 Blindern, 0316, Oslo, Norway. E-mail addresses:evansoelen@gmail.com, e.e.v.soelen@geo.uio.no(E.E. van Soelen)

Abstract

Precipitation in Japan is strongly affected by the East Asian monsoon system, resulting in wet summer conditions and relatively dry winter conditions. Few paleo-monsoon records exist from northeastern Asia, especially records showing decadal- to centennial-scale variability. Here we present a molecular hydrogen isotope (δD) record from Lake Kaiike, a small coastal lake in southwest Japan, to provide insight into monsoonal precipitation over the past two millennia. The δD record of friedelin, a terrestrial higher plant lipid, reveals three major shifts in precipitation: a decline from >-185‰ to <-190‰ at 1700 cal yr BP suggests a change to wetter conditions; values between -187.5‰ and -180‰ from 1480 to 800 cal yr BP indicate reduced precipitation; and a decline to below -195‰ after 800 cal yr BP reflects moist conditions during the Little Ice Age. These results highlight variability in the intensity of the East Asian Summer Monsoon occurring on decadal to centennial time scales. El Niño-like conditions are likely responsible for periods of high monsoon intensity, but comparison with other records in the region (northeast China and Japan) shows that contradicting patterns also exist, and so explaining these rainfall patterns is not straightforward.

Type
Research Article
Copyright
Copyright © University of Washington 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikari, D.P., Kumon, F., Kawajiri, K., 2002. Holocene climate variability as deduced from the organic carbon and diatom records in the sediments of Lake Aoki, central Japan. The Journal of the Geological Society of Japan 108, 249265.Google Scholar
Aizen, E.M., Aizen, V.B., Melack, J.M., Nakamura, T., Ohta, T., 2001. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. International Journal of Climatology 21, 535556. http://dx.doi.org/10.1002/joc.626.CrossRefGoogle Scholar
Alam, M., Sansing, T.B., Busby, E.L., Martiniz, D.R., Ray, S.M., 1979. Dinoflagellate sterols I: sterol composition of the dinoflagellates of Gonyaulax species. Steroids 33, 197203.Google Scholar
Bi, X., Sheng, G., Liu, X., Li, C., Fu, J., 2005. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes. Organic Geochemistry 36, 14051417. http://dx.doi.org/10.1016/j.orggeochem.2005.06.001.CrossRefGoogle Scholar
Boon, J.J., Rijpstra, W.I.C., de Lange, F., de Leeuw, J.W., Yoshioka, M., Shimizu, Y., 1979. Black Sea sterol-a molecular fossil for dinoflagellate blooms. Nature 277, 125127.CrossRefGoogle Scholar
Chandler, R.F., Hooper, S.N., 1979. Friedelin and associated triterpenoids. Phytochemistry 18, 711724.Google Scholar
Chang, C.-P., Zhang, Y., Li, T., 2000. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: roles of the subtropical ridge. Journal of Climate 13, 43104325.Google Scholar
Chen, F., Huang, X., Zhang, J., Holmes, J.A., Chen, J., 2006. Humid Little Ice Age in arid central Asia documented by Bosten Lake, Xinjiang, China. Science in China Series D: Earth Sciences 49, 12801290.Google Scholar
Chikaraishi, Y., Kaneko, M., Ohkouchi, N., 2012. Stable hydrogen and carbon isotopic compositions of long-chain (C21 —C33) n-alkanes and n-alkenes in insects. Geochimica et Cosmochimica Acta 95, 5362.Google Scholar
Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16, 436468.Google Scholar
Eglinton, G., Hamilton, R.J., 1967. Leaf epicuticular waxes. Science 156, 13221335.Google Scholar
Elsner, J.B., Liu, K.B., 2003. Examining the ENSO-typhoon hypothesis. Climate Research 25, 4354.Google Scholar
Gong, D.-Y., Ho, C.-H., 2003. Arctic oscillation signals in the East Asian summer monsoon. Journal of Geophysical Research: Atmospheres 108, 4066.Google Scholar
Hong, Y.T., Hong, B., Lin, Q.H., Shibata, Y., Hirota, M., Zhu, Y.X., Leng, X.T., Wang, Y., Wang, H., Yi, L., 2005. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12 000 years and paleo-El Niño. Earth and Planetary Science Letters 231, 337346.CrossRefGoogle Scholar
Hong, Y.T., Wang, Z.G., Jiang, H.B., Lin, Q.H., Hong, B., Zhu, Y.X., Wang, Y., Xu, L.S., Leng, X.T., Li, H.D., 2001. A 6000-year record of changes in drought and precipitation in northeastern China based on a δ13C time series from peat cellulose. Earth and Planetary Science Letters 185, 111119.Google Scholar
Hou, J., D’Andrea, W.J., MacDonald, D., Huang, Y., 2007. Hydrogen isotopic variability in leaf waxes among terrestrial and aquatic plants around Blood Pond, Massachusetts (USA). Organic Geochemistry 38, 977984.Google Scholar
IAEA/WMO, 2016. Global Network of Isotopes in Precipitation. The GNIP Database. Accessible at: http://www.iaea.org/water.Google Scholar
Kotani, T., Ozaki, M., Matsuoka, K., Snell, T.W., Hagiwara, A., 2001. Reproductive isolation among geographically and temporally isolated marine Brachionus strains. Hydrobiologia 446-447, 283290.Google Scholar
Lau, K.-M., Li, M.-T., 1984. The monsoon of East Asia and its global associations - a survey. Bulletin of the American Meteorological Society 65, 114125.Google Scholar
Lawrimore, J.H., Menne, M.J., Gleason, B.E., Williams, C.N., Wuertz, D.B., Vose, R.S., Rennie, J., 2011. An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. Journal of Geophysical Research 116, D19121. http://dx.doi.org/10.1029/2011JD016187.CrossRefGoogle Scholar
Lim, J., Matsumoto, E., Kitagawa, H., 2005. Eolian quartz flux variations in Cheju Island, Korea, during the last 6500 yr and a possible Sunemonsoon linkage. Quaternary Research 64, 1220.CrossRefGoogle Scholar
Liu, W., Yang, H., 2008. Multiple controls for the variability of hydrogen isotopic compositions in higher plant n-alkanes from modern ecosystems. Global Change Biology 14, 21662177.Google Scholar
Liu, W., Yang, H., Li, L., 2006. Hydrogen isotopic compositions of n-alkanes from terrestrial plants correlate with their ecological life forms. Oecologia 150, 330338.Google Scholar
Lopez, J.F., de Oteyza, T.G., Teixidor, P., Grimalt, J.O., 2005. Long chain alkenones in hypersaline and marine coastal microbial mats. Organic Geochemistry 36, 861872.Google Scholar
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 12561260.Google Scholar
Marlowe, I.T., Brassell, S.C., Eglinton, G., Green, J.C., 1990. Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments. Chemical Geology 88, 349375.CrossRefGoogle Scholar
Marlowe, I.T., Green, J.C., Neal, A.C., Brassell, S.C., Eglinton, G., Course, P.A., 1984. Long chain (n-C37—C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. British Phycological Journal 19, 203216.Google Scholar
Matsuyama, M., 1977. Limnological features of Lake Kaiike, a small coastal lake on Kamikoshiki Island, Kagoshima Prefecture, Japan. Japanese Journal of Limnology 38, 918.Google Scholar
Nagaoka, S., Yokoyama, Y., Nakada, M., Maeda, Y., 1996. Holocene sea-level change in the Goto Islands, Japan. Geographical Reports of Tokyo Metropolitan University 31, 1118.Google Scholar
Nakajima, Y., Okada, H., Oguri, K., Suga, H., Kitazato, H., Koizumi, Y., Fukui, M., Ohkouchi, N., 2003. Distribution of chloropigments in suspended particulate matter and benthic microbial mat of a meromictic lake, Lake Kaiike, Japan. Environmental Microbiology 5, 11031110.Google Scholar
Rontani, J.-F., Beker, B., Volkman, J.K., 2004. Long-chain alkenones and related compounds in the benthic haptophyte Chrysotila lamellosa Anand HAP 17. Phytochemistry 65, 117126.Google Scholar
Rozanski, Kazimer, Froehlich, Klaus, Mook, Willem G., 2001. Environmental Isotopes in the Hydrological Cycle: Principals and Applications. In: Technical Documents in Hydrology. IAEA and UNESCO, Paris.Google Scholar
Sachse, D., Billault, I., Bowen, G.J., Chikaraishi, Y., Dawson, T.E., Feakins, S.J., Freeman, K.H., Magill, C.R., McInerney, F.A., van der Meer, M.T.J., Polissar, P., Robins, R.J., Sachs, J.P., Schmidt, H.-L., Sessions, A.L., White, J.W.C., West, J.B., Kahmen, A., 2012. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annual Review of Earth and Planetary Sciences 40, 221249.Google Scholar
Sachse, D., Radke, J., Gleixner, G., 2006. dD values of individual n-alkanes from terrestrial plants along a climatic gradient — implications for the sedimentary biomarker record. Organic Geochemistry 37, 469483.Google Scholar
Sachse, D., Radke, J., Gleixner, G., 2004. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochimica et Cosmochimica Acta 68, 48774889.Google Scholar
Sainsbury, M., 1970. Friedelin and epifriedelinol from the bark of Prunus turfosa and a review of their natural distribution. Phytochemistry 9, 22092215.CrossRefGoogle Scholar
Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., Koster, J., Schouten, S., Hayes, J.M., de Leeuw, J.W., 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta 59, 18951900 Google Scholar
Stuiver, M., Reimer, P.J., Reimer, R., 2015. Calib Radiocarbon Calibration.Google Scholar
Takishita, K., Chikaraishi, Y., Leger, M.M., Kim, E., Yabuki, A., Ohkouchi, N., Roger, A.J., 2012. Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen. Biology Direct 7, 5.Google Scholar
Volkman, J.K., 2005. Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Organic Geochemistry 36, 139159 Google Scholar
Volkman, J.K., Barrett, S.M., Dunstan, G.A., Jeffrey, S.W., 1993. Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom. Organic Geochemistry 20, 715.Google Scholar
Volkman, J.K., Eglinton, G., Corner, E.D.S., Forsberg, T.E.V., 1980. Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi . Phytochem-istry 19, 26192622.CrossRefGoogle Scholar
Wang, B., Chan, J.C.L., 2002. How strong ENSO events affect tropical storm activity over the western North Pacific. Journal of Climate 15, 16431658 Google Scholar
Wang, B., Lin, H., 2002. Rainy season of the Asian—Pacific summer monsoon. Journal of Climate 15, 386398.2.0.CO;2>CrossRefGoogle Scholar
Wang, B., Wu, R., Fu, X., 2000. Pacific—East Asian teleconnection: how does ENSO affect East Asian climate? Journal of Climate 13, 15171536 Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C-C., Dorale, J.A., 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 23452348.Google Scholar
Wen, R., Xiao, J., Chang, Z., Zhai, D., Xu, Q., Li, Y., Itoh, S., 2010. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China. Boreas 39, 262272.Google Scholar
Woodruff, J.D., Donnelly, J.P., Okusu, A., 2009. Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, Japan. Quaternary Science Reviews, Quaternary Ice Sheet-Ocean Interactions and Landscape Responses 28, 17741785 Google Scholar
Wu, R., Wang, B., 2002. A contrast of the East Asian summer monsoon—ENSO relationship between 1962-77 and 1978-93. Journal of Climate 15, 32663279.2.0.CO;2>CrossRefGoogle Scholar
Yamada, K., Kamite, M., Saito-Kato, M., Okuno, M., Shinozuka, Y., Yasuda, Y., 2010. Late Holocene monsoonal-climate change inferred from Lakes Ni-no-Megata and San-no-Megata, northeastern Japan. Quaternary International, Climate Dynamics and Prehistoric Occupation: Eurasian Perspectives on Environmental Archaeology 220, 122132.Google Scholar
Yamaguchi, K.E., Oguri, K., Ogawa, N.O., Sakai, S., Hirano, S., Kitazato, H., Ohkouchi, N., 2010. Geochemistry of modern carbonaceous sediments overlain by a water mass showing photic zone anoxia in the saline meromictic Lake Kai-ike, southwest Japan: I. Early diagenesis of organic carbon, nitrogen, and phosphorus. Palaeogeography, Palaeoclimatology, Palaeoecology 294, 7282.CrossRefGoogle Scholar
Yanai, M., Li, C., Song, Z., 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. Journal of the Meteorological Society of Japan 70, 319351.Google Scholar
Yihui, D., Chan, J.C.L., 2005. The East Asian summer monsoon: an overview. Meteorology and Atmospheric Physics 89, 117142.Google Scholar
Yokoyama, Y., Nakada, M., Maeda, Y., Nagaoka, S., Okuno, J., Matsumoto, E., Sato, H., Matsushima, Y., 1996. Holocene sea-level change and hydro-isostasy along the west coast of Kyushu, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 123, 2947.Google Scholar
Yokoyama, Y., Naruse, T., Ogawa, N.O., Tada, R., Kitazato, H., Ohkouchi, N., 2006. Dust influx reconstruction during the last 26,000 years inferred from a sedimentary leaf wax record from the Japan Sea. Global and Planetary Change 54, 239250.Google Scholar
Zink, K.-G., Leythaeuser, D., Melkonian, M., Schwark, L., 2001. Temperature dependency of long-chain alkenone distributions in recent to fossil limnic sediments and in lake waters. Geochimica et Cosmochimica Acta 65, 253265.Google Scholar