Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T14:46:00.298Z Has data issue: false hasContentIssue false

Late Quaternary glaciations in the Taniantaweng Mountains

Published online by Cambridge University Press:  13 November 2023

Le Chai
Affiliation:
School of Geography, Liaoning Normal University, Dalian, Liaoning 116029, China School of Earth Sciences, East China University of Technology, Nanchang, Jiangxi 330013, China Jiangxi Geological Survey and Exploration Institute, Nanchang, Jiangxi 330009, China
Wei Zhang*
Affiliation:
School of Geography, Liaoning Normal University, Dalian, Liaoning 116029, China
Liang Liu
Affiliation:
School of Geography, Liaoning Normal University, Dalian, Liaoning 116029, China
Yapeng Li
Affiliation:
School of Geography, Liaoning Normal University, Dalian, Liaoning 116029, China
Qianyu Tang
Affiliation:
School of Geography, Liaoning Normal University, Dalian, Liaoning 116029, China
Ruifeng Ma
Affiliation:
School of Geography, Liaoning Normal University, Dalian, Liaoning 116029, China
Bo Sun
Affiliation:
School of Geography, Liaoning Normal University, Dalian, Liaoning 116029, China
Jingru Qiao
Affiliation:
School of Geography, Liaoning Normal University, Dalian, Liaoning 116029, China
*
Corresponding author: Wei Zhang; Email: zhangweilnu@163.com

Abstract

Constraining the timing and extent of Quaternary glaciations in the Tibetan Plateau (TP) is significant for the reconstruction of paleoclimatic environment and understanding the interrelationships among climate, tectonics, and glacial systems. We investigated the late Quaternary glacial history of the Qinggulong and Juequ valleys in the Taniantaweng Mountains, southeastern TP, using cosmogenic 10Be surface exposure dating. Four major glacial events were identified based on 26 10Be ages. The exposure ages of the oldest late Quaternary glaciation correspond to Marine Oxygen Isotope Stage (MIS) 6. The maximum glacial extent was dated to 48.5–41.1 ka (MIS 3), during the last glaciation, and was more advanced than that of the last glacial maximum (LGM). Geochronology and geomorphological evidence indicate that multiple glacial fluctuations occurred in the study area during the Early–Middle Holocene. These glacial fluctuations likely were driven by the North Atlantic climate oscillations, summer solar insolation variability, Asian summer monsoon intensity, and CO2 concentration.

Type
Thematic Set: Asian Climate
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bai, M., Chevalier, M.L., Pan, J., Replumaz, A., Leloup, P.H., Métois, M., Li, H.B., 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth and Planetary Science Letters 485, 1931.CrossRefGoogle Scholar
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.CrossRefGoogle Scholar
Bateman, M.D., Swift, D.A., Piotrowsk, J.A., Rhodes, E.J., Damsgaard, A., 2018. Can glacial shearing of sediment reset the signal used for luminescence dating? Geomorphology 306, 90101.CrossRefGoogle Scholar
Bauska, T.K., Brook, E.J., Marcott, S.A., Baggenstos, D., Shackleton, S., Severinghaus, J.P., Petrenko, V.V., 2018. Controls on millennial-scale atmospheric CO2 variability during the last glacial period. Geophysical Research Letters 45, 77317740.CrossRefGoogle Scholar
Bauska, T.K., Marcott, S.A., Brook, E.J., 2021. Abrupt changes in the global carbon cycle during the last glacial period. Nature Geoscience 14, 9196.CrossRefGoogle Scholar
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T.F., Fischer, H., Kipfstuhl, S., Chappellaz, J., 2015. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophysical Research Letters 42, 542549.CrossRefGoogle Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Bi, W.L., Yi, C.L., 2016. Review of ESR dating technique in Quaternary glacial chronology. Journal of Glaciology and Geocryology 38, 12921299. [in Chinese, with English Abstract]Google Scholar
Blomdin, R., Stroeven, A.P., Harbor, J.M., Lifton, N.A., Heyman, J., Gribenski, N., Petrakov, D.A., et al., 2016. Evaluating the timing of former glacier expansions in the Tian Shan: a key step towards robust spatial correlations. Quaternary Science Reviews 153, 7896.CrossRefGoogle Scholar
Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi, K., Phillips, F., Schaefer, J., Stone, J., 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology 31, 188198.CrossRefGoogle Scholar
Chai, L., Zhang, W., Liu, L., Ma, R.F., Tang, Q.Y., Li, Y.P., Qiao, J.R., 2022. Study on early-mid Holocene glacial advance events in the Taniantaweng Mountains, southeastern Qinghai-Tibet Plateau. Journal of Glaciology and Geocryology 44, 307315. [in Chinese, with English Abstract]Google Scholar
Chen, Y.X., Li, Y.K., Wang, Y.Y., Zhang, M., Cui, Z.J., Yi, C.L., Liu, G.N., 2015. Late Quaternary glacial history of the Karlik Range, easternmost Tian Shan, derived from 10Be surface exposure and optically stimulated luminescence datings. Quaternary Science Reviews 115, 1727.CrossRefGoogle Scholar
Cheng, H., Edwards, R.L., Sinha, A., Spötl, C., Yi, L., Chen, ST., Kelly, M., et al., 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 541, 640646.CrossRefGoogle Scholar
Cheng, H., Zhang, H.W., Spotl, C., Baker, J., Sinha, A., Li, H.Y., Bartolome, M., et al., 2020. Timing and structure of the Younger Dryas event and Its underlying climate dynamics. Proceedings of the National Academy of Sciences 117, 2340823417.CrossRefGoogle ScholarPubMed
Chevalier, M.L., Replumaz, A., 2019. Deciphering old moraine age distributions in SE Tibet showing bimodal climatic signal for glaciations: Marine Isotope Stages 2 and 6. Earth and Planetary Science Letters 507, 105118.CrossRefGoogle Scholar
Chevalier, M.L., Hilley, G., Tapponnier, P., Woerd, J.V.D., Zeng, J.L., Finkel, R.C., Ryerson, F.J., Li, H.B., Liu, X.H., 2011. Constraints on the late Quaternary glaciations in Tibet from cosmogenic exposure ages of moraine surfaces. Quaternary Science Reviews 30, 528554.CrossRefGoogle Scholar
Chevalier, M.L., Leloup, P.H., Replumaz, A., Pan, J., Liu, D., Li, H., Gourbet, L., Métois, M., 2016. Tectonic-geomorphology of the Litang fault system, SE Tibetan Plateau, and implication for regional seismic hazard. Tectonophysics 682, 278292.CrossRefGoogle Scholar
Chevalier, M.L., Leloup, P.H., Replumaz, A., Pan, J.W., 2018. Temporally constant slip rate along the Ganzi fault, NW Xianshuihe fault system, eastern Tibet. Geological Society of America Bulletin 130, 396410.CrossRefGoogle Scholar
Chevalier, M.L., Replumaz, A., Wang, S.G., Pan, J.W., Bai, M.K., Li, K.Y., Li, H.B., 2022a. Limit of monsoonal precipitation in southern Tibet during the Last Glacial Maximum from relative moraine extents. Geomorphology 397, 108012. https://doi.org/10.1016/j.geomorph.2021.108012.CrossRefGoogle Scholar
Chevalier, M.L., Wang, S.G., Replumaz, A., Li, H.B., 2022b. Marine Oxygen Isotope Stage (MIS)-6 glacial advances on the Tibetan Plateau more extensive than during MIS-2 due to more abundant precipitation. Acta Geologica Sinica (English Edition) 96, 14841494.CrossRefGoogle Scholar
Dielforder, A., Hetzel, R., 2014. The deglaciation history of the Simplon region (southern Swiss Alps) constrained by 10Be exposure dating of ice-molded bedrock surfaces. Quaternary Science Reviews 84, 2638.CrossRefGoogle Scholar
Dong, G.C., Yi, C.L., Caffee, M., 2014. 10Be dating of boulders on moraines from the last glacial period in the Nyainqentanglha Mountains, Tibet. Science China (Earth Sciences) 57, 221231.CrossRefGoogle Scholar
Dong, G.C., Zhou, W.J., Fu, Y.C., Zhang, L., Zhao, G.Q., Li, M., 2020. The last glaciation in the headwater area of the Xiaokelanhe River, Chinese Altai: evidence from 10Be exposure-ages. Quaternary Geochronology 56, 101054. https://doi.org/10.1016/j.quageo.2020.101054.CrossRefGoogle Scholar
Dong, G.C., Zhou, W.J., Xian, F., Fu, Y.C., Zhang, L., Ding, P.K., Zhao, G.Q., Li, M., 2022. Timing and climatic drivers for the MIS 6 glaciation in the central Himalaya: 10Be surface exposure dating of hummocky moraine northwest of Mt. Gang Benchhen, Paiku Gangri. Palaeogeography, Palaeoclimatology, Palaeoecology 605, 111230. https://doi.org/10.1016/j.palaeo.2022.111230.CrossRefGoogle Scholar
Dortch, J.M., Owen, L.A., Caffee, M.W., 2013. Timing and climatic drivers for glaciation across semi-arid western Himalayan–Tibetan orogen. Quaternary Science Reviews 78, 188208.CrossRefGoogle Scholar
Dortch, J.M., Tomkins, M.D., Saha, S., Murari, M.K., Schoenbohm, L.M., Curl, D., 2022. A tool for the ages: the probabilistic cosmogenic age analysis tool (P-CAAT). Quaternary Geochronology 7, 101323. https://doi.org/10.1016/j.quageo.2022.101323.CrossRefGoogle Scholar
Duller, G.A.T., 2006. Single grain optical dating of glacigenic deposits. Quaternary Geochronology 1, 296304.CrossRefGoogle Scholar
Finkel, R.C., Owen, L.A., Barnard, P.L., Caffee, M.W., 2003. Beryllium-10 dating of Mount Everest moraines indicates a strong monsoon influence and glacial synchroneity throughout the Himalaya. Geology 31, 561564.2.0.CO;2>CrossRefGoogle Scholar
Fu, P., Stroeven, A.P., Harbor, J.M., Hättestrand, C., Heyman, J., Caffee, M.W., Zhou, L.P., 2013. Paleoglaciation of Shaluli Shan, southeastern Tibetan Plateau. Quaternary Science Reviews 64, 121135.CrossRefGoogle Scholar
Gosse, J.C., Phillips, F.M., 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20, 14751560.CrossRefGoogle Scholar
Graf, A.A., Strasky, S., Zhao, Z.Z., Akar, N., Ivy-Ochs, S., Kubik, P.W., Christl, M., Kasper, H.U., Wieler, R., Schlüchter, C., 2008. Glacier extension on the eastern Tibetan Plateau in response to MIS 2 cooling, with a contribution to 10Be and 21Ne methodology. In: Strasky, S., Glacial Response to Global Climate Changes: Cosmogenic Nuclide Chronologies from High and Low Latitudes [submitted to Quaternary Geochronology]. DSc Thesis, ETH Zürich, University of Bern, Bern, Switzerland, pp. 77110.Google Scholar
Gribenski, N., Jansson, K.N., Preusser, F., Harbor, J.M., Stroeven, A.P., Trauerstein, M., Blomdin, R., et al., 2017. Re-evaluation of MIS 3 glaciation using cosmogenic radionuclide and single grain luminescence ages, Kanas Valley, Chinese Altai. Journal of Quaternary Science 33, 5567.CrossRefGoogle Scholar
Gupta, A.K., Singh, R.K., Dutt, S., Cheng, H., Clemens, S.C., Kathayat, G., 2021. High-frequency shifts in the Indian summer monsoon following termination of the YD event. Quaternary Science Reviews 259, 106888. https://doi.org/10.1016/j.quascirev.2021.106888.CrossRefGoogle Scholar
Haldorsen, S., 1981. Grain-size distribution of subglacial till and its realtion [sic] to glacial scrushing and abrasion. Boreas 10, 91105.CrossRefGoogle Scholar
Herzschuh, U., 2006. Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quaternary Science Reviews 25, 163178.CrossRefGoogle Scholar
Heyman, J., 2014. Paleoglaciation of the Tibetan Plateau and surrounding mountains based on exposure ages and ELA depression estimates. Quaternary Science Review 91, 3041.CrossRefGoogle Scholar
Heyman, J., Stroeven, A.P., Harbor, J.M., Caffee, M.W., 2011. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302, 7180.CrossRefGoogle Scholar
Hong, Y.T., Hong, B., Lin, Q.H., Zhu, Y.X., Shibata, Y., Hirota, M., Uchida, M., et al., 2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth and Planetary Science Letters 211, 371380.CrossRefGoogle Scholar
Hu, G., Yi, C.L., Zhang, J.F., Dong, G.C., Liu, J.H., Xu, X.K., Jiang, T., 2017. Extensive glacial advances during the Last Glacial Maximum near the eastern Himalayan syntaxis. Quaternary International 443, 112.CrossRefGoogle Scholar
Hughes, P.D., Gibbard, P.L., Woodward, J.C., 2005. Quaternary glacial records in mountain regions: a formal stratigraphical approach. Episodes 28, 8592.CrossRefGoogle Scholar
Immerzeel, W.W., Beek, L.P.H., Bierkens, M.F.P., 2010. Climate change will affect the Asian Water Towers. Science 328, 13821385.CrossRefGoogle ScholarPubMed
Kohl, C.P., Nishiizumi, K., 1992. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56, 35833587.CrossRefGoogle Scholar
Kong, P., Na, C.G., Fink, D., Zhao, X.T., Xiao, W., 2009. Moraine dam related to late Quaternary glaciation in the Yulong Mountains, southwest China, and impacts on the Jinsha River. Quaternary Science Reviews 28, 32243235.CrossRefGoogle Scholar
Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.CrossRefGoogle Scholar
Li, Y.K., 2013. Determining topographic shielding from digital elevation models for cosmogenic nuclide analysis: a GIS approach and field validation. Journal of Mountain Science 10, 355362.CrossRefGoogle Scholar
Li, Y.K., Liu, G.N., Kong, P., Harbor, J., Chen, Y.X., Caffee, M., 2011. Cosmogenic nuclide constraints on glacial chronology in the source area of the Urumqi River, Tian Shan, China. Journal of Quaternary Science 26, 297304.CrossRefGoogle Scholar
Li, Y.K., Liu, G.N., Chen, Y.X., Li, Y.N., Harbor, J., Stroeven, A.P., Caffee, M., Zhang, M., Li, C.C., Cui, Z.J., 2014. Timing and extent of Quaternary glaciations in the Tianger Range, eastern Tian Shan, China, investigated using 10Be surface exposure dating. Quaternary Science Reviews 98, 723.CrossRefGoogle Scholar
Lifton, N., Sato, T., Dunai, T.J., 2014. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth and Planetary Science Letters 386, 149160.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003. https://doi.org/10.1029/2004PA001071.Google Scholar
Liu, B.B., Cui, Z.J., Peng, X., Han, Y.S., Liu, G.N., 2018. Using 10Be exposure dating to constrain glacial advances during the late glacial and Holocene on Mount Xuebaoding, eastern Tibetan Plateau. Quaternary Research 90, 348359.CrossRefGoogle Scholar
Marcott, S.A., Bauska, T.K., Buizert, C., Steig, E.J., Rosen, J.L., Cuffey, K.M., Fudge, T.J., et al., 2014. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616619.CrossRefGoogle ScholarPubMed
Murari, M.K., Owen, L.A., Dortch, J.M., Caffee, M.W., Dietsch, C., Fuchs, M., Haneberg, W.C., Sharma, M.C., Townsend-Small, A., 2014. Timing and climatic drivers for glaciation across monsoon-influenced regions of the Himalayan–Tibetan orogen. Quaternary Science Reviews 88, 159182.CrossRefGoogle Scholar
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258, 403413.CrossRefGoogle Scholar
Ou, X.J., Lai, Z.P., Zhou, S.Z., Chen, R., Zeng, L.H., 2015. Optical dating of young glacial sediments from the source area of the Urumqi River in Tianshan Mountains, northwestern China. Quaternary International 358, 1220.CrossRefGoogle Scholar
Owen, L.A., 2009. Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. Quaternary Science Reviews 28, 21502164.CrossRefGoogle Scholar
Owen, L.A., Benn, D.I., 2005. Equilibrium-line altitudes of the Last Glacial Maximum for the Himalaya and Tibet: an assessment and evaluation of results. Quaternary International 138, 5578.CrossRefGoogle Scholar
Owen, L.A., Dortch, J.M., 2014. Nature and timing of Quaternary glaciation in the Himalayan–Tibetan Orogen. Quaternary Science Reviews 88, 1454.CrossRefGoogle Scholar
Owen, L.A., Finkel, R.C., Barnard, P.L., Ma, H.Z., Asahi, K., Caffee, M.W., Derbyshire, E., 2005. Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide surface exposure dating. Quaternary Science Reviews 24, 13911411.CrossRefGoogle Scholar
Owen, L.A., Robinson, R., Benn, D.I., Finkel, R.C., Davis, N.K., Yi, C.L., Putkonen, J., Li, D.W., Murray, A.S., 2009. Quaternary glaciation of Mount Everest. Quaternary Science Reviews 28, 14121433.CrossRefGoogle Scholar
Pellitero, R., Rea, B.R., Spagnolo, M., Bakke, J., Hughes, P., Ivy-Ochs, S., Lukas, S., Ribolini, A., 2015. A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers & Geosciences 82, 5562.CrossRefGoogle Scholar
Pellitero, R., Rea, B.R., Spagnolo, M., Bakke, J., Ivy-Ochs, S., Frew, C.R., Hughes, P., Ribolini, A., Lukas, S., Renssen, H., 2016. GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Computers & Geosciences 94, 7785.CrossRefGoogle Scholar
Porter, S.C., 1975. Glaciation limit in New Zealand's Southern Alps. Arctic and Alpine Research 7, 3337.CrossRefGoogle Scholar
Preffer, W.T., Arendt, A., Bliss, A., Bolch, T., Cogley, J.G., Gardner, A.S., Hagen, J.-O., et al., 2014. The Randolph Glacier inventory; a globally complete inventory of glaciers. Journal of Glaciology 60, 537552.CrossRefGoogle Scholar
Rea, B.R., 2009. Defining modern day area-altitude balance ratios (AABRs) and their use in glacier–climate reconstructions. Quaternary Science Reviews 28, 237248.CrossRefGoogle Scholar
Richards, B.W.M., 2000. Luminescence dating of Quaternary sediments in the Himalaya and High Asia: a practical guide to its use and limitations for constraining the timing of glaciation. Quaternary International 65–66, 4961.CrossRefGoogle Scholar
Saha, S., Owen, L.A., Orr, E.N., Caffee, M.W., 2018. Timing and nature of Holocene glacier advances at the northwestern end of the Himalayan–Tibetan orogen. Quaternary Science Reviews 187, 177202.CrossRefGoogle Scholar
Saha, S., Owen, L.A., Orr, E.N., Caffee, M.W., 2019. High-frequency Holocene glacier fluctuations in the Himalayan–Tibetan orogen. Quaternary Science Reviews 220, 372400.CrossRefGoogle Scholar
Schäfer, J.M., Tschudi, S., Zhao, Z.Z., Wu, X.H., Ivy-Ochs, S., Wieler, R., Heinrich, B., Kubik, P.W., Schlüchter, C., 2002. The limited influence of glaciations in Tibet on global climate over the past 170,000 yr. Earth and Planetary Science Letters 194, 287297.CrossRefGoogle Scholar
Schneider, R., Schmitt, J., Koehler, P., Joos, F., Fischer, H., 2013. A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the glacial inception. Climate of the Past 9, 25072523.CrossRefGoogle Scholar
Seong, Y.B., Owen, L.A., Yi, C.L., Finkel, R.C., 2009. Quaternary glaciation of Muztag Ata and Kongur Shan: evidence for glacier response to rapid climate changes throughout the Late Glacial and Holocene in westernmost Tibet. Geological Society of America Bulletin 121, 348365.CrossRefGoogle Scholar
Shi, Y.F., 2002. Characteristics of late Quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia. Quaternary International 97–98, 7991.CrossRefGoogle Scholar
Sigman, D.M., Hain, M.P., Haug, G.H., 2010. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 4755.CrossRefGoogle Scholar
Solomina, O.N., Bradley, R.S., Hodgson, D.A., Ivy-Ochs, S., Jomelli, V., Mackintosh, A.N., Nesje, A., et al., 2015. Holocene glacier fluctuations. Quaternary Science Reviews 111, 934.CrossRefGoogle Scholar
Stone, J.O., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 2375323759.CrossRefGoogle Scholar
Strasky, S., Graf, A.A., Zhao, Z., Kubik, P.W., Baur, H., Schlüchter, C., Wieler, R., 2009. Late Glacial ice advances in southeast Tibet. Journal of Asian Earth Sciences 34, 458465.CrossRefGoogle Scholar
Su, Z., Pu, J.C., 1996. Development conditions, number and morphological characteristics of glaciers in the Hengduan Mountains region. In: Li, J.J., Su, Z. (Eds.) Glaciers in the Hengduan Mountains. Science Press, Beijing, pp. 121.Google Scholar
Tang, L.Y., Shen, C.M., Liao, G.B., Overpeck, J.T., Yu, Y.S., 2000. Climatic and hydrological changes in the southeastern Qinghai–Tibetan Plateau during the past 18000 years. Acta Micropalaeontologica Sinica 17, 113124.Google Scholar
Tang, L.Y., Shen, C.M., Liu, K.B., Yu, S.R., Liu, C.H., 2004. Climatic changes since the Last Glacial Maximum in the southeastern Tibetan Plateau: pollen evidence. Science in China 34, 434442.CrossRefGoogle Scholar
Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Henderson, K., Lin, P.-N., Mashiotta, T., 2005. Tropical ice core records: evidence for asynchronous glaciation on Milankovitch timescales. Journal of Quaternary Science 20, 723733.CrossRefGoogle Scholar
Wang, J., 2010. Glacial advance in the QingHai–Tibet Plateau and peripheral mountains during the mid-MIS-3. Quaternary Sciences 30, 10551065. [in Chinese, with English abstract]Google Scholar
Wang, J., Raisbeck, G., Xu, X., Yiou, F., Bai, S., 2006. In situ cosmogenic 10Be dating of the Quaternary glaciations in the southern Shaluli Mountain on the southeastern Tibetan Plateau. Science in China Series D: Earth Sciences 49, 12911298.CrossRefGoogle Scholar
Wang, J., Cui, H., Harbor, J.M., Zheng, L.M., Yao, P., 2015. Mid-MIS3 climate inferred from reconstructing the Dalijia Shan ice cap, northeastern Tibetan Plateau. Journal of Quaternary Science 30, 558568.CrossRefGoogle Scholar
Wang, J., Wang, W.C., Cao, B., Cui, H., Chen, X.J., Qiu, J.K., Lei, M.H., Liao, J.S., 2023. Millennial-scale glacier fluctuations on the southeastern Tibetan Plateau during MIS 2. Earth and Planetary Science Letters 601, 117903. https://doi.org/10.1016/j.epsl.2022.117903.CrossRefGoogle Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, J., Dykoski, C.A., Li, X.D., 2005. The Holocene Asian Monsoon: links to solar changes and North Atlantic climate. Science 308, 854857.CrossRefGoogle ScholarPubMed
Wang, Y.J., Cheng, H., Edwards, R.L., Kong, X.G., Shao, X.H., Chen, S.T., Wu, J.Y., Jiang, XJ., Wang, X.F., An, Z.S., 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 10901093.CrossRefGoogle Scholar
Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P., Jetel, M., 2011. Structure and origin of Holocene cold events. Quaternary Science Reviews 30, 31093123.CrossRefGoogle Scholar
Xu, L.B., Ou, X.J., Lai, Z.P., Zhou, S.Z., Wang, J., Fu, Y.C., 2010. Timing and style of Late Pleistocene glaciation in the Queer Shan, northern Hengduan Mountains in the eastern Tibetan Plateau. Journal of Quaternary Science 25, 957966.CrossRefGoogle Scholar
Xu, X.K., Glasser, N.F., 2015. Glacier sensitivity to equilibrium line altitude and reconstruction for the Last Glacial cycle: glacier modeling in the Payuwang Valley, western Nyaiqentanggulha Shan, Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 440, 614620.CrossRefGoogle Scholar
Yao, T.D., Thompson, L.G., Mosbrugger, V., Zhang, F., Ma, Y.M., Luo, T.X., Xu, B.Q., et al., 2012. Third pole environment (TPE). Environmental Development 3, 5264.CrossRefGoogle Scholar
Yi, C.L., Jiao, K.Q., Liu, K.X., He, Q.C., Ye, Y.G., 2002. ESR dating of the sediments of the last glaciation at the source of the Urumqi River, Tian Shan Mountains, China. Quaternary International 97/98, 141146.CrossRefGoogle Scholar
Yi, C.L., Bi, W.L., Li, J.P., 2016. ESR dating of glacial moraine deposits: some insights about the resetting of the germanium (Ge) signal measured in quartz. Quaternary Geochronology 35, 6976.CrossRefGoogle Scholar
Zeng, L.H., Ou, X.J., Chen, R., Lai, Z.P., 2019. OSL dating on glacial sediments of the Last Glacial in headwater of Urumqi River, Tianshan Mountains. Journal of Glaciology and Geocryology 41, 761769. [in Chinese, with English abstract]Google Scholar
Zhang, W., Chai, L., 2016. The preliminary study of the Quaternary glacier in middle part of the Tenasserim Chain with ESR dating method. Journal of Glaciology and Geocryology 38, 12811291. [in Chinese, with English abstract]Google Scholar
Zhang, W., Liu, L., Chen, Y.X., Liu, B.B., Harbor, J.M., Cui, Z.J., Liu, R., Liu, X., Zhao, X., 2016. Late glacial 10Be ages for glacial landforms in the upper region of the Taibai glaciation in the Qinling Mountain range, China. Journal of Asian Earth Sciences 115, 383392.CrossRefGoogle Scholar
Zhang, W., Chai, L., Evans, I.S., Li, Y.P., Qiao, J.R., Tang, Q.Y., Sun, B., 2019. Geomorphic features of Quaternary glaciation in the Taniantaweng Mountain, on the southeastern Qinghai–Tibet Plateau. Journal of Mountain Science 16, 256274.CrossRefGoogle Scholar
Zhang, Z.G., Wang, J., Xu, X.B., Bai, S.B., Chang, Z.Y., 2015. Cosmogenic 10Be and 26Al chronology of the last glaciation of the palaeo-Daocheng Ice Cap, southeastern Qinghai–Tibetan Plateau. Acta Geologica Sinica (English Edition) 89, 575584.CrossRefGoogle Scholar
Zhao, J.D., Zhou, S.Z., Liu, S.Y., He, Y.Q., Xu, L.B., Wang, J., 2007. A preliminary study of the glacier advance in MIS3b in the western regions of China. Journal of Glaciology and Geocryology 29, 233241. [in Chinese, with English Abstract]Google Scholar
Zhao, J.D., Song, Y.G., King, J.W., Liu, S.Y., Wang, J., Wu, M., 2010. Glacial geomorphology and glacial history of the Muzart River Valley, Tianshan Range, China. Quaternary Science Reviews 29, 14531463.CrossRefGoogle Scholar
Zhou, S.Z., Li, J.J., Zhang, S.Q., 2002. Quaternary glaciation of the Bailang River Valley, Qilian Shan. Quaternary International 97–98, 103110.CrossRefGoogle Scholar
Zhou, S.Z., Xu, L.B., Colgan, P.M., Mickelson, D.M., Wang, X.L., Wang, J., Zhong, W., 2007. Cosmogenic 10Be dating of Guxiang and Baiyu glaciations. Chinese Science Bulletin 52, 13871393.CrossRefGoogle Scholar
Supplementary material: File

Chai et al. supplementary material 1

Chai et al. supplementary material
Download Chai et al. supplementary material 1(File)
File 67.6 KB
Supplementary material: File

Chai et al. supplementary material 2

Chai et al. supplementary material
Download Chai et al. supplementary material 2(File)
File 49.5 KB