Skip to main content Accessibility help

Modern pollen-vegetation relationships along a steep temperature gradient in the Tropical Andes of Ecuador

  • Kimberley Hagemans (a1), Claudia-Dana Tóth (a1), Manuela Ormaza (a2), William D. Gosling (a3), Dunia H. Urrego (a4), Susana León-Yánez (a2), Friederike Wagner-Cremer (a1) and Timme H. Donders (a1)...

The characterization of modern pollen rain assemblages along environmental gradients is an essential prerequisite for reliable interpretations of fossil pollen records. In this study, we identify pollen-vegetation relationships using modern pollen rain assemblages in moss polsters (n = 13) and lake sediment surface samples (n = 11) along a steep temperature gradient of 7°C (3100–4200 m above sea level) on the western Andean Cordillera, Ecuador. The pollen rain is correlated to vascular plant abundance data recorded in vegetation relevées (n = 13). Results show that pollen spectra from both moss polsters and sediment surface samples reflect changes in species composition along the temperature gradient, despite overrepresentation of upper montane forest taxa in the latter. Estimated pollen transport distance for a lake (Laguna Llaviucu) situated in a steep upper montane forest valley is 1–2 km, while a lake (Laguna Pallcacocha) in the páramo captures pollen input from a distance of up to 10–40 km. Weinmannia spp., Podocarpus spp., and Hedyosmum sp. are indicators of local upper montane forest vegetation, while Phlegmariurus spp. and Plantago spp. are indicators for local páramo vegetation.

Corresponding author
*Corresponding author e-mail address:
Hide All
Bakker, J., Moscol-Olivera, M., Hooghiemstra, H., 2008. Holocene environmental change at the upper forest line in northern Ecuador. The Holocene 18, 877893.
Barkman, J.J., Doing, H., Segal, S., 1964. Kritische Bemerkungen und Vorschläge zur quantitativen Vegetationsanalyse. Acta Botanica Neerlandica 13, 394419.
Birks, H.J.B., Line, J.M., 1992. The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. The Holocene 2, 110.
Bush, M.B., 1995. Neotropical plant reproductive strategies and fossil pollen representation. American Naturalist 145, 594609.
Bush, M.B., 2000. Deriving response matrices from central American modern pollen rain. Quaternary Research 54, 132143.
Bush, M.B., Rivera, R., 1998. Pollen dispersal and representation in a neotropical rain forest. Global Ecology and Biogeography Letters 7, 379392.
Bush, M.B., Rivera, R., 2001. Reproductive ecology and pollen representation among neotropical trees. Global Ecology and Biogeography 10, 359367.
Bush, M.B., Silman, M.R., Urrego, D.H., 2004. 48,000 years of climate and forest change in a biodiversity hot spot. Science 303, 827829.
Buytaert, W., Celleri, R., Willems, P., De Bièvre, B., Wyseure, G., 2006. Spatial and temporal rainfall variability in mountainous areas: a case study from the south Ecuadorian Andes. Journal of Hydrology 329, 413421.
Cárdenas, M.L., Gosling, W.D., Pennington, R.T., Poole, I., Sherlock, S.C., Mothes, P., 2014. Forests of the tropical eastern Andean flank during the middle Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 393, 7689.
Cárdenas, M.L., Gosling, W.D., Sherlock, S.C., Poole, I., Pennington, R.T., Mothes, P., 2011. The response of vegetation on the Andean flank in western Amazonia to Pleistocene climate change. Science 331, 10551058.
Carrillo-Rojas, G., Silva, B., Córdova, M., Célleri, R., Bendix, J., 2016. Dynamic mapping of evapotranspiration using an energy balance-based model over an Andean páramo catchment of southern Ecuador. Remote Sensing 8.
Cleef, A.M., 1981. The Vegetation of the Páramos of the Colombian Cordillera Oriental. PhD dissertation, Dissertationes Botanica 61. Cramer, Verduz.
Colinvaux, P.A., Bush, M., Steinitz, K., M., Miller, M., 1997. Glacial and postglacial pollen records from the Ecuadorian Andes and Amazon. Quaternary Research 48, 8399.
Córdova, M., Célleri, R., Shellito, C.J., Orellana-Alvear, J., Abril, A., Carrillo-Rojas, G., 2016. Near-surface air temperature lapse rate over complex terrain in the southern Ecuadorian Andes: implications for temperature mapping. Arctic, Antarctic, and Alpine Research 48, 678684.
Cuesta, F., Peralvo, M., Merino-Viteri, A., Bustamante, M., Baquero, F., Freile, J.F., Muriel, P., Torres-Carvajal, O., 2017. Priority areas for biodiversity conservation in mainland Ecuador. Neotropical Biodiversity 3, 93106.
Davis, M.B., 1963. On the theory of pollen analysis. American Journal of Science 261, 897912.
Davis, O.K.,1984. Pollen frequencies reflect vegetation patterns in a great basin (U.S.A.) mountain range. Review of Palaeobotany and Palynology 40, 295315.
Environmental Systems Research Institute, 2014. ArcGIS Release 10.3.1. Redlands, CA.
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. 4th ed. Wiley, Chichester.
Fall, P.L., 1992. Pollen accumulation in a montane region of Colorado, USA: a comparison of moss polsters, atmospheric traps, and natural basins. Review of Palaeobotany and Palynology 72, 169197.
Flantua, S.G.A., Hooghiemstra, H., Vuille, M., Behling, H., Carson, J.F., Gosling, W.D., Hoyos, , et al. , 2016. Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records. Climate of the Past 12, 483523.
Gaudreau, D.C., Jackson, S.T., Webb, T., 1989. Spatial scale and sampling strategy in palaeoecological studies of vegetation patterns in mountainous terrain. Acta Botanica Neerlandica 38, 369390.
Gentry, A.H., 1992. Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63, 19.
Gosling, W.D., Julier, A.C.M., Adu-Bredu, S., Djagbletey, G.D., Fraser, W.T., Jardine, P.E., Lomax, B.H., et al. , 2018. Pollen-vegetation richness and diversity relationships in the tropics. Vegetation History and Archaeobotany 27, 411418.
Grabandt, R.A.J., 1980. Pollen rain in relation to arboreal vegetation in the Colombian Cordillera Oriental. Review of Palaeobotany and Palynology 29, 65147.
Grabandt, R.A.J., 1985. Pollen Rain in Relation to Vegetation in the Colombian Cordillera Oriental. PhD dissertation, Universiteit van Amsterdam, Amsterdam.
Groot, M.H.M., Bogotá, R.G., Lourens, L.J., Hooghiemstra, H., Vriend, M., Berrio, J.C., Tuenter, E., et al. , 2011. Ultra-high resolution pollen records from the northern Andes reveal rapid shifts in montane climates within the last two glacial cycles. Climate of the Past 7, 299316.
Groot, M.H.M., Hooghiemstra, H., Berrio, J.C., Giraldo, C., 2013. North Andean environmental and climatic change at orbital to submillenial time-scales: Vegetation, water levels and sedimentary regimes from Lake Fúquene 130-27ka. Review of Palaeobotany and Palynology, 197, 18204.
Hammer, Ø, Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 19.
Hansen, B.C.S., Rodbell, D.T., Seltzer, G.O., León, B., Young, K.R., Abbott, M., 2003. Late-glacial and Holocene vegetational history from two sites in the western Cordillera of southwestern Ecuador. Palaeogeography, Palaeoclimatology, and Palaeoecology 194, 79108.
Hellman, S., Gaillard, M.J., Broström, A., Sugita, S., 2008. The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: validation in southern Sweden. Journal of Quaternary Science 23, 2142.
Hooghiemstra, H., 1984. Vegetational and climatic history of the high plain of Bogotá, Colombia. PhD dissertation, University of Amsterdam, Amsterdam.
Hooghiemstra, H., Van der Hammen, T., 2004. Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philosophical Transactions of the Royal Society B 359, 173181.
Jansen, B., De Boer, E.J., Cleef, A.M., Hooghiemstra, H., Moscol-Olivera, M., Tonneijck, F.H., Verstraten, J.M., 2013. Reconstruction of late Holocene forest dynamics in northern Ecuador from biomarkers and pollen in soil cores. Palaeogeography, Palaeoclimatology, Palaeoecology 386, 607619.
Jantz, N., Homeier, J., León-Yánez, S., Moscoso, A., Behling, H., 2013. Trapping pollen in the tropics—comparing modern pollen rain spectra of different pollen traps and surface samples across Andean vegetation zones. Review of Palaeobotany and Palynology 193, 5769.
Juggins, S., 2007. C2 Version 1.5 User guide: Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne.
Ledru, M.-P., Jomelli, V., Samaniego, P., Vuille, M., Hidalgo, S., Herrera, M., Ceron, C., 2012. The Medieval Climate Anomaly and the Little Ice Age in the eastern Ecuadorian Andes. Climate of the Past 8, 42954332.
Liu, K.B., Colinvaux, P.A., 1985. Forest changes in the Amazon Basin during the last glacial maximum. Nature 318, 556557.
Ministerio del Ambiente Ecuador (MAE), 2014. Mapa de cobertura y uso de la tierra del 2014, Sistema Nacional de Monitoreo del Patrimonio Natural, Quito, Ecuador.
Moscol-Olivera, M., Cleef, A.M., 2009. Vegetation composition and altitudinal distribution of Andean rain forests in El Angel and Guandera reserves, northern Ecuador. Phytocoenologia 39, 175204.
Moscol-Olivera, M., Duivenvoorden, J.F., Hooghiemstra, H., 2009. Pollen rain and pollen representation across a forest-páramo ecotone in northern Ecuador. Review of Palaeobotany and Palynology 157, 285300.
Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., 2002. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162165.
Muñoz, P., Gorin, G., Parra, N., Velásquez, C., Lemus, D., Monsalve, M.C., Jojoa, M., 2017. Holocene climatic variations in the Western Cordillera of Colombia: a multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ. Quaternary Science Reviews 155, 159178.
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853858.
Niemann, H., Brunschön, C., Behling, H., 2010. Vegetation/modern pollen rain relationship along an altitudinal transect between 1920 and 3185 m asl in the Podocarpus National Park region, southeastern Ecuadorian Andes. Reviews of Palaeobotany and Palynology 159, 6980.
Reese, C.A., Liu, K.B., 2005. A modern pollen rain study from the central Andes region of South America. Journal of Biogeography 32, 709718.
Rodbell, D.T., Bagnato, S., Nebolini, J.C., Seltzer, G.O., Abbott, M.B., 2002. A late glacial-Holocene tephrochronology for glacial lakes in southern Ecuador. Quaternary Research 57, 343354.
Rull, V., 2006. A high mountain pollen-altitude calibration set for palaeoclimatic use in the tropical Andes. The Holocene 16, 105117.
Schiferl, J.D., Bush, M.B., Silman, M.R., Urrego, D.H., 2018. Vegetation responses to late Holocene climate changes in an Andean forest. Quaternary Research 89, 6074.
Šmilauer, P., Lepš, J., 2014. Multivariate Analysis of Ecological Data Using Canoco 5. Cambridge University Press, Cambridge.
Smit, A., 1978. Pollen morphology of Polylepis boyacensis cuatrecasas, Acaena cylindristachia ruiz et pavon and Acaena elongata L. (Rosaceae) and its application to fossil material. Review of Palaeobotany and Palynology 25, 393398.
Sugita, S., 1994. Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. Journal of Ecology 82, 881.
Sugita, S., 2007. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. The Holocene 17, 229241.
Ter Braak, C.J.F., Šmilauer, P., 2012. Canoco Reference Manual and User's Guide: Software for Ordination. Microcomputer Power, Ithaca.
Urrego, D.H., Niccum, B.A., La Drew, C.F., Silman, M.R., Bush, M.B., 2011a. Fire and drought as drivers of early Holocene tree line changes in the Peruvian Andes. Journal of Quaternary Science 26, 2836.
Urrego, D.H., Silman, M.R., Bush, M.B., 2005. The last glacial maximum: stability and change in a western Amazonian cloud forest. Journal of Quaternary Science 20, 693701.
Urrego, D.H., Silman, M.R., Correa-Metrio, A., Bush, M.B., 2011b. Pollen-vegetation relationships along steep climatic gradients in western Amazonia. Journal of Vegetation Science 22, 795806.
United States Geological Survey (USGS), 2014. NASA Shuttle Radar Topography Mission (SRTM), Version 3.0., Global 1 arc second, region: South America. USGS, Reston.
Van't Veer, R., Hooghiemstra, H., 2000. Montane forest evolution during the last 650,000 years in Colombia: a multivariate approach based on pollen record Funza-I. Journal of Quaternary Science 15, 329346.
Vuille, M., Bradley, R.S., Keimig, F., 2000. Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. Journal of Climate 13, 25202535.
Weng, C., Bush, M.B., Silman, M.R., 2004. An analysis of modern pollen rain on an elevational gradient in southern Peru. Journal of Tropical Ecology 20, 113124.
Weng, C., Hooghiemstra, H., Duivenvoorden, J.F., 2007. Response of pollen diversity to the climate-driven altitudinal shift of vegetation in the Colombian Andes. Philosophical Transactions of the Royal Society B: Biological Sciences 362, 253262.
Whitney, B.S., Smallman, T.L., Mitchard, E.T.A., Carson, J.F., Mayle, F.E., Bunting, J.M., 2018. Constraining pollen-based estimates of forest cover in the Amazon: a simulation approach. The Holocene 29, 262270
Wille, M., Hooghiemstra, H., Behling, H., van der Borg, K., Negret, A.J., 2001. Environmental change in the Colombian subAndean forest belt from 8 pollen records: the last 50 kyr. Vegetation History and Archaeobotany 10, 6177.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quaternary Research
  • ISSN: 0033-5894
  • EISSN: 1096-0287
  • URL: /core/journals/quaternary-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed