Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-05T21:57:03.165Z Has data issue: false hasContentIssue false

Neotectonic evolution of the Brazilian northeastern continental margin based on sedimentary facies and ichnology, ☆☆

Published online by Cambridge University Press:  20 January 2017

Rosana Gandini*
Affiliation:
Institute of Geosciences, University of São Paulo—USP, São Paulo, SP, Brazil
Dilce de Fátima Rossetti
Affiliation:
Division of Remote Sensing, Brazilian National Institute for Space Research—INPE, São José dos Campos, SP, Brazil
Renata Guimarães Netto
Affiliation:
Graduate School of Geology, University of Rio dos Sinos—UNISINOS, São Leopoldo, RS, Brazil
Francisco Hilário Rego Bezerra
Affiliation:
Departament of Geology, Federal University of Rio Grande do Norte−UFRN, Natal, Brazil
Ana Maria Góes
Affiliation:
Institute of Geosciences, University of São Paulo—USP, São Paulo, SP, Brazil
*
*Corresponding author. E-mail addresses:gandini.rosana@usp.br (R. Gandini), rossetti@dsr.inpe.br (D.F. Rossetti), nettorg@unisinos.br (R.G. Netto), bezerrafh@geologia.ufrn.br (F.H.R. Bezerra), goes@igc.usp.br (A.M. Góes).

Abstract

Quaternary post-Barreiras sediments are widespread along Brazil's passive margin. These deposits are well exposed in the onshore Paraíba Basin, which is one of the rift basins formed during the Pangean continental breakup. In this area, the post-Barreiras sediments consist of sandstones with abundant soft-sediment deformation structures related to seismicity contemporaneous with deposition. The trace fossils Thalassinoides and Psilonichnus are found up to 38 m above modern sea level in sandstones dated between 60.0 (± 1.4) and 15.1 (± 1.8) ka. The integration of ichnological and sedimentary facies suggests nearshore paleoenvironments. Such deposits could not be related to eustatic sea-level rise, as this time coincides with the last glaciation. Hence, an uplift of 0.63 mm/yr, or 1.97 mm/yr if sea level was 80 m lower in the last glaciation, would have been required to ascend the post-Barreiras sediments several meters above the present-day sea level during the last 60 ka. This would suggest that the post-rift stage of the South American eastern passive margin may have experienced tectonic reactivation more intense than generally recognized. Although more complete data are still needed, the information presented herein may play an important role in studies aiming to decipher the Quaternary evolution of this passive margin.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

RRH: Neotectonic Evolution of the Brazilian Continental Margin.

☆☆

LRH: GANDINI et al.

References

Aitken, M.J. Thermoluminescence Dating. (1985). Academic Press, London. (359 pp.)Google Scholar
Balsamo, F., Bezerra, F.H.R., Vieira, M.M., and Storti, F. Structural control on the formation of iron oxide concretions and Liesegang bands in faulted, poorly lithified Cenozoic sandstones of the Paraíba Basin, Brazil. Geological Society of America Bulletin 125, (2013). 913931.CrossRefGoogle Scholar
Barreto, A.M.F., Bezerra, F.H.R., Suguio, K., Tatumi, S.H., Yee, M., Paiva, R., and Munita, C.S. Late Pleistone marine terrace deposits in northeastern Brazil: sea-level change and tectonic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 179, (2002). 5769.Google Scholar
Bedatou, E., Melchor, R.N., Bellosi, E., and Genise, J.F. Crayfish burrows from late Jurassic–Late Cretaceous continental deposits of Patagonia: Argentina. Their palaeoecological, palaeoclimatic and palaeobiogeographical significance. Palaeogeography, Palaeoclimatology, Palaeoecology 257, (2008). 169184.Google Scholar
Beurlen, K. Estratigrafia da faixa sedimentar costeira Recife–João Pessoa. Boletim de Geociências 16, (1967). 4353.Google Scholar
Bezerra, F.H.R., and Vita-Finzi, C. How active is a passive margin? Paleoseismicity in northeastern Brazil. Geology 28, (2000). 591594.Google Scholar
Bezerra, F.H.R., Barreto, A.M.F., and Suguio, K. Holocene sea level history on the Rio Grande do Norte State coast, Brazil. Marine Geology 196, (2003). 7389.Google Scholar
Bezerra, F.H.R., Amaro, V.E., Vitafinzi, C., and Saadi, A. Pliocene–Quaternary fault control of sedimentation and coastal plain morphology in NE Brazil. Journal of South American Earth Sciences 14, (2001). 6175.CrossRefGoogle Scholar
Bezerra, F.H.R., Neves, B.B.B., Correa, A.C.B., Barreto, A.M.F., and Suguio, K. Late Pleistocene tectonic-geomorphological development within a passive margin–the Cariatá trough, northeastern Brazil. Geomorphology 97, (2008). 555582.CrossRefGoogle Scholar
Bezerra, F.H.R., Nascimento, A.F., Ferreira, J.M., Nogueira, F.C.C., Fuck, R.A., Neves, B.B.B., and Souza, M.O.L. Review of active faults in the Borborema Province, Intraplate South America integration of seismological and paleoseismological data. Tectonophysics 510, (2011). 269290.Google Scholar
Bezerra, F.H.R., Rossetti, D.F., Oliveira, R.G., Medeiros, W.E., Brito-Neves, B.B., Balsama, F., Nogueira, F.C.C., Dantas, E.L., Andrades-Filho, C.O., and Góes, A.M. Neotectonic reactivation of shear zones and implications for faulting style and geometry in the continental margin of NE Brazil. Tectonophysics 614, (2014). 7890.CrossRefGoogle Scholar
Bittencourt, A.C.S.P., Dominguez, J.M.L., and Ussami, N. Flexure as a tectonic control on the large scale geomorphic characteristics of the eastern Brazil coastal zone. Journal of Coastal Research 15, (1999). 505519.Google Scholar
Bromley, R.G. Trace Fossils: Biology, Taphonomy and Applications. 2nd edition (1996). Chapman and Hall, London. (361 pp.)Google Scholar
Bromley, R.G., and Frey, R.W. Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha . Bulletin of the Geological Society of Denmark 23, (1974). 311335.Google Scholar
Bromley, R.G., and Ekdale, A.A. Composite ichnofabrics and tiering of burrows. Geological Magazine 123, (1986). 5965.CrossRefGoogle Scholar
Buatois, L.A., Gringas, M.K., MacEachern, J., Mángano, M.G., Zonneveld, J.P., Pemberton, S.G., Netto, R.G., and Martin, A.J. Colonization of brackish-water systems through time: evidence from the trace-fossil record. Palaios 20, (2005). 321347.CrossRefGoogle Scholar
Buatois, L.A., Santiago, N., Herrera, M., Plink-Björklund, P., Steels, R., Espin, M., and Parra, K. Sedimentological and ichnological signatures of changes in wave, river and tidal influence along a Neogene tropical deltaic shoreline. Sedimentary Geology 59, (2011). 15681612.Google Scholar
Caldas, L.H.O., Stattegger, K., and Vital, H. Holocene sea-level history: evidence from coastal sediments of the northern Rio Grande do Norte coast, NE Brazil. Marine Geology 228, (2006). 3953.Google Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., and McCABE, M. The last glacial maximum. Science 325, (2009). 710714.CrossRefGoogle ScholarPubMed
Clifton, H.E., Hunter, R.E., and Phillips, R.L. Depositional structures and processes in the non-barred high energy nearshore. Journal of Sedimentary Petrology 41, (1971). 651670.Google Scholar
Crowley, T.J., and North, G.R. Paleoclimatology. (1991). Oxford University Press, Oxford New York. (339 pp.)Google Scholar
Curran, H.A. Ichnofacies, ichnocoenoses and ichnofabrics of Quaternary shallow-marine to dunal tropical carbonates: a model and implications. Miller, W. Trace Fossils: Concepts, Problems, Prospects. (2007). Elsevier, Amsterdam. 232247.Google Scholar
Curran, H.A., and Martin, A.J. Complex decapods burrows and ecological relationships in modern and Pleistocene intertidal carbonate environments. San Salvador Island, Bahamas, Palaeogeography, Palaeoclimatology, Palaeoecology 192, (2003). 229245.Google Scholar
Cutler, K.B., Edwards, R.L., Taylor, F.W., Cheng, H., Adkins, J., Gallup, C.D., Cutler, P.M., Burr, G.S., and Bloom, A.L. Rapid sea-level fall and deep-ocean temperature change since the last interglacial period. Earth and Planetary Science Letters 206, (2003). 253271.Google Scholar
Dendith, M.C., and Featherstone, W.E. Controls on intra-plate seismicity in southwestern Australia. Tectonophysics 376, (2003). 167184.Google Scholar
Dominguez, J.M.L., Bittencourt, A.C.S.P., and Martin, L. Controls on Quaternary coastal evolution of the east-northeastern coast of Brazil: roles of sea-level history, trade winds and climate. Sedimentary Geology 80, (1992). 213232.Google Scholar
Driese, S.G., Fischer, M.W., Easthouse, K.A., Marks, G.T., Gogola, A.R., and Schoner, A.E. Model for genesis of shoreface and shelf sandstone sequences, southern Appalachians: paleoenvironmental reconstruction of an Early Silurian shelf system. Swift, D.J.P., Oertel, G.F., Tillman, R.W., and Thome, J.A. Shelf Sand and Sandstone Bodies: Geometry, Facies and Sequence Stratigraphy. International Association of Sedimentologists, Amsterdam, Special Publication 14, (1991). 309338.Google Scholar
Ekdale, A.A., and Bromley, R.G. Analysis of composite ichnofabrics: an example in Uppermost Cretaceous Chalk of Denmark. Palaios 6, (1991). 232249.Google Scholar
Ekdale, A.A., Bromley, R.G., and Pemberton, S.G. Ichnology. The Use of Trace Fossils in Sedimentology and Stratigraphy. (1984). Society of Economic Paleontologists and Mineralogists, Tulsa. (371 pp.)Google Scholar
Faccenna, C., Rossetti, F., Becker, T.W., Danesi, S., and Morelli, A. Recent extension driven by mantle upwelling beneath the Admiralty Mountains (East Antarctica). Tectonics 27, (2008). 115.Google Scholar
Fairbanks, R.G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, (1989). 637642.Google Scholar
Ferreira, J.M., Bezerra, F.H.R., Sousa, M.O.L., Nascimento, A.F., , J.M., and França, G.S. The role of Precambrian mylonitic belts and present-day stress field in the coseismic reactivation of the Precambrian lineament, Brazil. Tectonophysics 456, (2008). 111126.Google Scholar
Frey, R., Howard, J.D., and Pryor, W.A. Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 23, (1978). 199229.Google Scholar
Frey, R.W., Curran, H.A., and Pemberton, S.G. Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus . Journal of Paleontology 58, (1984). 333350.Google Scholar
de Gibert, J.M., Netto, R.G., Tognoli, F.M.W., and Grangeiro, M.E. Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 230, (2006). 7084.Google Scholar
Gingras, M.K., Hubbard, S.M., Pemberton, S.G., and Saunders, T. The significance of Pleistocene Psilonichnus at Willapa Bay, Washington. Palaios 15, (2000). 142151.Google Scholar
Gingras, M.K., Bann, K.L., MacEachern, J.A., Waldron, J., and Pemberton, S.G. A conceptual framework for the application of trace fossils. MacEachern, J.A., Bann, K.L., Gingras, M.K., and Pemberton, S.G. Applied ichnology. Society of Economic Paleontologists and Mineralogists, Tulsa, Short Course Notes 52, (2007). 125.Google Scholar
Gingras, M.K., MacEachern, J.A., and Dashtgard, S.A. Process ichnology and the elucidation of physical–chemical stress. Sedimentary Geology 237, (2011). 115134.Google Scholar
Gregory-Wodzicki, K.M. Uplift history of the Central and Northern Andes: A review. GSA Bulletin 112, (2000). 10911105.Google Scholar
Hervé, F., and Ota, Y. Fast Holocene uplift rates at the Andes of Chiloé, southern Chile. Revista Geológica del Chile 20, 1 (1993). 1523.Google Scholar
Howard, J.D., and Frey, R.W. Characteristic trace fossils in nearshore to offshores sequences, Upper Cretaceous of east-central Utah. Canadian Journal Earth Sciences 21, (1984). 200219.Google Scholar
Japsen, P., Bonow, J.M., Green, P.F., Chalmers, J.A., and Lidmar-Bergström, K. Elevated, passive continental margins: Long-term highs or Neogene uplifts?. New evidence from West Greenland: Earth and Planetary Science Letters 248, (2006). 330339. http://dx.doi.org/10.1016/j.epsl.2006.05.036Google Scholar
Kim, J.Y., and Pickerill, R.K. Cretaceous nonmarine trace fossils from Hasadong and Jinju formations of the Namhae Area, Kyongsangnamdo, Southeast Korea. Ichnos: an International Journal for Plant and Animal Traces 9, (2002). 4160.Google Scholar
Lopes, A.E.V., Assumpção, M., do Nascimento, A.F., Ferreira, J.M., Menezes, E.A.S., and Barbosa, J.R. Intraplate earthquake swarm in Belo Jardim, NE Brazil: reactivation of a major Neoproterozoic shear zone (Pernambuco Lineament). Geophysical Journal International 180, (2010). 13031312.Google Scholar
MacEachern, J.A., Pemberton, S.G., Bann, K.L., and Gingras, M.K. Departures from the archetypal ichnofacies: effective recognition of physicchemical stresses in the rock record. MacEachern, J.A., Bann, K.L., Gingras, M.K., and Pemberton, S.G. Applied ichnology. Society for Sedimentary Geology, Tulsa, Short Course Notes 52, (2007). 6593.Google Scholar
MacEachern, J.A., Bann, K.L., Pemberton, S.G., and Gingras, M.K. The ichnofacies paradigm: high resolution palaeoenvironmental interpretation of the rock record. MacEachern, J.A., Bann, L.K., Gingras, M.K., and Pemberton, S.G. Applied ichnology. Society of Economic Paleontologists and Mineralogists Tulsa, Short Course Notes 52, (2007). 2764.Google Scholar
Martin, L., Dominguez, J.M.L., and Bittencourt, A.C.S.P. Fluctuating Holocene sea levels is eastern and southeastern Brazil: evidence from a multiple fossil and geometric indicators. Journal of Coastal Research 19, (2003). 101124.Google Scholar
Matos, R.M.D. The northeastern Brazilian rift systems. Tectonics 11, (1992). 766791.Google Scholar
Myrow, P.M. Thalassinoides and the enigma of Early Palaeozoic open-framework burrows system. Palaios 10, (1995). 5879.Google Scholar
Moraes-Neto, J.M., and Alkimim, F.F. A deformação das coberturas terciárias do planalto da Borborema (PB–RN) e seu significado tectônico. Revista Brasileira de Geociencias 31, (2001). 95106.CrossRefGoogle Scholar
Moura-Lima, E.N., Bezerra, F.H.R., Lima-Filho, F.P., Castro, D.L., Sousa, M.O.L., Fonseca, V.P., and Aquino, M.R. 3-D geometry and luminescence chronology of Quaternary soft-sediment deformation structures in gravels, northeastern Brazil. Sedimentary Geology 235, (2011). 160171.CrossRefGoogle Scholar
Murray, A.S., and Olley, J. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria-Journal on Methods and Applications of Absolute Chronology 21, (2002). 116.Google Scholar
Netto, R.G., and Grangeiro, M.E. Neoichnology of the seaward side of Peixe Lagoon in Mostardas, southernmost Brazil: the Psilonichnus ichnocoenosis revisited. Revista Brasileira de Paleontologia 12, (2009). 211224.Google Scholar
Pedoja, K., Husson, L., Regard, V., Cobbold, P.R., Ostanciaux, E., Johnson, M.E., Kershaw, S., Saillard, M., Martinod, J., Furgerot, L., Weill, P., and Delcaillau, B. Relative sea-level fall since the last interglacial stage: are coasts uplifting worldwide?. Earth-Science Reviews 108, (2011). 115.Google Scholar
Pemberton, S.G., and Whightman, D.M. Ichnological characteristics of brackish water deposits. Pemberton, S.G. Applications of Ichnology to Petroleum Exploration: A Core Workshop. Society for Sedimentary Geology, Tulsa, Core Workshop 17, (1992). 141167.Google Scholar
Pemberton, S.G., Spila, M., Pulham, A.J., Saunders, T., Maceachern, J.A., Robbins, D., and Sinclair, I.K. Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon reservoirs, Jeanne D'Arc Basin. Geological Association of Canada, Short Course 15, (2001). 343 Google Scholar
Pollard, J.E., Goldring, R., and Buck, S.G. Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretation. Journal of the Geological Society 150, (1993). 149164.Google Scholar
Prescott, J.R., and Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, (1994). 497500.CrossRefGoogle Scholar
Raaf, J.M.F., Boersma, J.R., and Van Gelder, A. Wave-generated structures and sequences from a shallow marine succession, Lower Carboniferous, County Cork, Ireland. Sedimentology 24, (1977). 451483.Google Scholar
Reineck, H.-E. Sedimentgefûge im Bereichder südlichen Nordsee. Abhandlungen der Senckenbergische Naturforschende Gesellschaft 505, (1963). 1138.Google Scholar
Reinson, G.E. Barrier-island and associated strand-plain systems. Walker, R.G. Facies models. (1984). Geological Association of Canada, St. John's. 119140.Google Scholar
Roberts, H.M., and Duller, G.A.T. Standardized growth curves for optical dating of sediment using multiple-grain aliquots. Radiation Measurements 38, (2004). 241252.Google Scholar
Rosa, L.C., and Borzone, C.A. Spatial distribution of Ocypode quadrata (Crustacea: Ocypodidae) along estuarine environments in the Paranaguá Bay Complex, Southern Brazil. Revista Brasileira de Zoologia 25, (2008). 383388.Google Scholar
Rossetti, D.F. Paleosurfaces from northeastern Amazonia as a key for reconstructing paleolandscapes and understanding weathering products. Sedimentary Geology 169, (2004). 151174.Google Scholar
Rossetti, D.F., Goés, A.M., and Souza, S.B.L. Estratigrafia da Sucessão Sedimentar Pós-Barreiras (Zona Bragantina, Pará) com base em radar de penetração no solo. Brazilian Journal of Geophysics 19, (2001). 113130.Google Scholar
Rossetti, D.F., Valeriano, M.M., Bezerra, F.H.R., Brito-Neves, B.B., and Góes, A.M. Caracterização morfológica da porção sul da Sub-bacia de Alhandra, Bacia Paraíba, com base em dados SRTM: contribuição na compreensão do arcabouço estrutural. Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, Natal, Brasil. (2009). 33253332.Google Scholar
Rossetti, D.F., Bezerra, F.H.R., Góes, A.M., Valeriano, M.M., Andrades Filho, C.O., Mittani, J.C.R., Tatumi, S.H., and Brito-Neves, B.B. Late Quaternary sedimentation in the Paraíba Basin, northeastern Brazil: implications for the interplay among landform, sea level and tectonics in Eastern South America passive margin. Palaeogeography, Palaeoclimatology, Palaeoecology 300, (2011). 191204.Google Scholar
Rossetti, D.F., Bezerra, F.H.R., Góes, A.M., and Brito-Neves, B.B. Sediment deformation in Miocene and post-Miocene strata, northeastern Brazil: evidence for paleoseismicity in a passive margin. Sedimentary Geology 235, (2011). 172187.CrossRefGoogle Scholar
Rossetti, D.F., Góes, A.M., Bezerrra, F.H.R., Valeriano, M.M., Brito-Neves, B.B., and Ochoa, F.L. Contribution to the stratigraphy of the onshore Paraíba Basin, Brazil. Anais da Academia Brasileira de Ciências 84, (2012). 187207.Google Scholar
Rossetti, D.F., Bezerra, F.H.B., and Dominguez, J.M.L. Late Oligocene-Miocene transgressions along the equatorial and eastern margins of Brazil. Earth-Science Reviews 123, (2013). 87112.Google Scholar
Saillard, M., Hall, S.R., Audin, L., Farber, D.L., Hérail, G., Martinod, J., Regard, V., Finkel, R.C., and Bondoux, F. Non-steady long-term uplift rates and Pleistocene marine terrace development along the Andean margin of Chile (31ºS) inferred from 10 Be dating. Earth and Planetary Science Letters 277, (2009). 5063. http://dx.doi.org/10.1016/j.epsl.2008.09.039Google Scholar
Savrda, C.E., and Nanson, L.L. Ichnology of fair–weather and storm deposits in an Upper Cretaceous estuary (Eutaw Formation, western Georgia, USA). Palaeogeography, Palaeogeography, Palaeoclimatology, Palaeoecology 202, (2003). 6783.Google Scholar
Shackleton, N.J. Oxygen isotopes, ice volume, and sea level. Quaternary Science Reviews 6, (1988). 183190.Google Scholar
Suguio, K., Bezerra, F.H.R., and Barreto, A.M.F. Luminescence dated Late Pleistocene wave-built terraces in northeastern Brazil. Anais da Academia Brasileira de Ciências 83, (2011). 907920.Google Scholar
Suguio, K., Barreto, A.M.F., Oliveira, P.E., Bezerra, F.H.R., and Lilela, M.C.S.H. Indicators of Holocene sea-level changes along the coast of the States of Pernambuco and Paraíba, Brazil. Geologia USP–Série Científica 13, (2013). 141152.Google Scholar
Tatumi, S.H., Kowata, E.A., Gozzi, G., Kassab, L.R.P., Suguio, K., Barreto, A.M.F., and Bezerra, F.H.R. Optical dating results of beachrock, eolic dunes and sediments applied to sea-level changes study. Journal of Luminescence 102–103, (2001). 562565.Google Scholar
Tatumi, S.H., Silva, L.P., Pires, E.L., Rossetti, D.F., Góes, A.M., and Munita, C.S. Datação de sedimentos Pós-Barreiras no Norte do Brasil: implicações paleogeográficas. Revista Brasileira de Geociencias 38, (2008). 514524.Google Scholar