Skip to main content
    • Aa
    • Aa

Patterns and implications of Plant-soil δ 13C and δ 15N values in African savanna ecosystems

  • Lixin Wang (a1) (a2), Paolo D'Odorico (a1), Lydia Ries (a1) (a3) and Stephen A. Macko (a1)

Southern African savannas are mixed plant communities where C3 trees co-exist with C4 grasses. Here foliar δ 15N and δ 13C were used as indicators of nitrogen uptake and of water use efficiency to investigate the effect of the rainfall regime on the use of nitrogen and water by herbaceous and woody plants in both dry and wet seasons. Foliar δ 15N increased as aridity rose for both C3 and C4 plants for both seasons, although the magnitude of the increase was different for C3 and C4 plants and for two seasons. Soil δ 15N also significantly increased with aridity. Foliar δ 13C increased with aridity for C3 plants in the wet season but not in the dry season, whereas in C4 plants the relationship was more complex and non-linear. The consistently higher foliar δ 15N for C3 plants suggests that C4 plants may be a superior competitor for nitrogen. The different foliar δ 13C relationships with rainfall may indicate that the C3 plants have an advantage when competing for water resources. The differences in water and nitrogen use likely collectively contribute to the tree–grass coexistence in savannas. Such differences facilitate interpretations of palaeo-vegetation composition variations and help predictions of vegetation composition changes under future climatic scenarios.

Corresponding author
*Corresponding author. E322 E-Quad Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA. Fax: +1 609 258 2799. E-mail address:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J.N. Aranibar , I.C. Anderson , S. Ringrose , S.A. Macko , (2003). Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies. Journal of Arid Environments 54, 345358.

J.N. Aranibar , L. Otter , S.A. Macko , C.J.W. Feral , H.E. Epstein , P.R. Dowty , F. Eckardt , H.H. Shugart , R.J. Swap , (2004). Nitrogen cycling in the soil-plant system along a precipitation gradient in the Kalahari sands. Global Change Biology 10, 359373.

J.N. Aranibar , I.C. Anderson , H.E. Epstein , C.J.W. Feral , R.J. Swap , J. Ramontsho , S.A. Macko , (2008). Nitrogen isotope composition of soils, C3 and C4 plants along land use gradients in southern Africa. Journal of Arid Environments 72, 326337. 10.1016/j.jaridenv.2007.06.007

D.J. Beerling , C.P. Osborne , (2006). The origin of the savanna biome. Global Change Biology 12, 20232031.

M.I. Bird , E.M. Veenendaal , J.J. Lloyd , (2004). Soil carbon inventories and δ13C along a moisture gradient in Botswana. Global Change Biology 10, 342349.

D.L. Brenner , R. Amundson , W.T. Baisden , C. Kendall , J. Harden , (2001). Soil N and N-15 variation with time in a California annual grassland ecosystem. Geochimica et Cosmochimica Acta 65, 41714186.

N. Buchmann , J.R. Brooks , K.D. Rapp , J.R. Ehleringer , (1996). Carbon isotope composition of C4 grasses is influenced by light and water supply. Plant Cell and Environment 19, 392402.

W.D. Clayton , (1981). Evolution and distribution of grasses. Annals of the Missouri Botanical Garden 68, 514.

G. Farquhar , J. Ehleringer , K. Hubick , (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40, 503537.

C.J.W. Feral , H.E. Epstein , L. Otter , J.N. Aranibar , H.H. Shugart , S.A. Macko , J. Ramontsho , (2003). Carbon and nitrogen in the soil-plant system along rainfall and land-use gradients in southern Africa. Journal of Arid Environments 54, 327343.

C.T. Garten , (1993). Variation in foliar 15N abundance and the availability of soil nitrogen on walker branch watershed. Ecology 74, 20982113.

L.L. Handley , C.M. Scrimgeour , (1997). Terrestrial plant ecology and 15N natural abundance: the present limits to interpretation for uncultivated systems with original data from a Scottish old field. M. Begon , A.H. Fitter Advances in Ecological Research 27, Academic Press, San Diego.133212.

P. Högberg , (1997). 15N natural abundance in soil-plant systems. New Phytologist 137, 179203.

R. Jackson , J. Banner , E. Jobbágy , W. Pockman , D. Wall , (2002). Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418, 623626.

R.B. Jackson , E.G. Jobbagy , R. Avissar , S.B. Roy , D.J. Barrett , C.W. Cook , K.A. Farley , D.C.L. Maitre , B.A. McCarl , B.C. Murray , (2005). Trading water for carbon with biological carbon sequestration. Science 310, 19441947.

F. Laio , A. Porporato , L. Ridolfi , I. Rodriguez-Iturbe , (2001). Plants in water-controlled ecosystems. Active role in hydrological processes and response to water stress. II Probabilistic soil moisture dynamics. Advances in Water Resources 24, 707723.

A.L. Lamb , M.J. Leng , M.U. Mohammed , H.F. Lamb , (2004). Holocene climate and vegetation change in the Main Ethiopian Rift Valley, inferred from the composition (C/N and δ13C) of lacustrine organic matter. Quaternary Science Reviews 23, 881891.

P.H. Raven , D.I. Axelrod , (1974). Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61, 539673.

D. Robinson , (2001). δ15N as an integrator of the nitrogen cycle. Trends in Ecology and Evolution 16, 153162.

K.G. Roques , O , T.G. Connor , A.R. Watkinson , (2001). Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. Journal of Applied Ecology 38, 268280.

S.P. Sah , H. Rita , H. Ilvesniemi , (2006). 15N natural abundance of foliage and soil across boreal forests of Finland. Biogeochemistry 80, 307318.

M. Sankaran , N.P. Hanan , R.J. Scholes , J. Ratnam , D.J. Augustine , B.S. Cade , J. Gignoux , S.I. Higgins , X.L. Roux , F. Ludwig , J. Ardo , F. Banyikwa , A. Bronn , G. Bucini , K.K. Caylor , M.B. Coughenour , A. Diouf , W. Ekaya , C.J. Feral , E.C. February , P.G.H. Frost , P. Hiernaux , H. Hrabar , K.L. Metzger , H.H.T. Prins , S. Ringrose , W. Sea , J. Tews , J. Worden , N. Zambatis , (2005). Determinants of woody cover in African savannas. Nature 438, 846849.

G. Sarmiento , (1984). The Ecology of Neotropical Savannas. Harvard University Press, Cambridge, MA.

R.J. Scholes , B.H. Walker , (1993). An African Savanna. Cambridge University Press, .

R.J. Scholes , S.R. Archer , (1997). Tree–grass interactions in savannas. Annual Review of Ecology and Systematics 28, 517544.

R.J. Swap , J.N. Aranibar , P.R. Dowty , W.P. Gilhooly , S.A. Macko , (2004). Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Global Change Biology 10, 350358.

A.D. Thomas , S.R. Hoon , P.E. Linton , (2008). Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari. Applied Soil Ecology 39, 254263.

D.S.G. Thomas , M. Knight , G.F.S. Wiggs , (2005). Remobilization of southern African desert dune systems by twenty-first century global warming. Nature 435, 12181221.

M.D. Vivo , A.P. Carmignotto , (2004). Holocene vegetation change and the mammal faunas of South America and Africa. Journal of Biogeography 31, 943957.

L. Wang , D , P. Odorico , S. Ringrose , S. Coetzee , S. Macko , (2007a). Biogeochemistry of Kalahari sands. Journal of Arid Environments 71, 259279. 10.1016/j.jaridenv.2007.03.016

L. Wang , G.S. Okin , J. Wang , H. Epstein , S.A. Macko , (2007b). Predicting leaf and canopy 15N compositions from reflectance spectra. Geophysical Research Letters 34, L02401 10.1029/2006GL028506

L. Wang , P.-J.L. Shaner , S. Macko , (2007c). Foliar δ15N patterns along successional gradients at plant community and species levels. Geophysical Research Letters 34, L16403 10.1029/2007GL030722

L. Wang , P. D’Odorico , G. Okin , S. Macko , (2009). Isotope composition and anion chemistry of soil profiles along the Kalahari Transect. Journal of Arid Environments 73, 480486.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quaternary Research
  • ISSN: 0033-5894
  • EISSN: 1096-0287
  • URL: /core/journals/quaternary-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 31 *
Loading metrics...

* Views captured on Cambridge Core between 20th January 2017 - 21st August 2017. This data will be updated every 24 hours.