Skip to main content

Pleistocene deep-sea ostracods from the Oki Ridge, Sea of Japan (IODP Site U1426) and condition of the intermediate water

  • Tatsuhiko Yamaguchi (a1), Kentaro Kuroki (a2), Katsura Yamada (a2), Takuya Itaki (a3), Kaoru Niino (a4) and Isao Motoyama (a4)...

The Sea of Japan (also termed the East Sea) has a circulation system isolated from the Pacific Ocean and East China Sea. The East Asian winter monsoon drives the circulation system and cools the Tsushima Warm Current (TWC) to form the Japan Sea Intermediate–Proper Water (JSIPW). The intermediate water conveys oxygen to deep-sea floors, which is available for benthic animals. During the Pliocene (3.5–2.8 Ma), Temperate Intermediate Water (TIW) was formed under the weak winter monsoon, and extinct ostracod TIW taxa were found. Little is known about early Pleistocene intermediate water and the extinction mode of benthic ostracods. We studied radiolarians and ostracods from deep-sea sediments between 2.0 and 1.3 Ma (Marine Oxygen Isotope Stage [MIS] 77 to MIS 41) at Integrated Ocean Drilling Program Site U1426, Sea of Japan. The ostracod faunas contained TIW and JSIPW taxa. The radiolarian subtropical-water taxa and the JSIPW ostracods indicate a small influx of the TWC and the JSIPW. The TIW occasionally expanded to the middle bathyal zone. By analogy with the relationship between the modern JSIPW and winter monsoon, weak winter monsoon possibly caused gentle temperature gradients in the water column and the expansion of the TIW. The JSIPW taxa expanded their ranges into the deep sea during interglacial periods.

Corresponding author
*Corresponding author at: Center for Advanced Marine Core Research, Kochi University, Monobe B200, Nankoku, Kochi 783-8502, Japan. E-mail address: (T. Yamaguchi).
Hide All
Ao, H., Dekkers, M.J., Qin, L., Xiao, G., 2011. An updated astronomical timescale for the Plio-Pleistocene deposits from South China Sea and new insights into Asian monsoon evolution. Quaternary Science Reviews 30: 15601575.
Ayress, M., Barrows, T., Passlow, V., Whatley, R., 1999. Neogene to Recent species of Krithe (Crustacea: Ostracoda) from the Tasman Sea and off southern Australia with description of five new species. Records of the Australian Museum 51: 122.
Braeckman, U., Vanaverbeke, J., Vincx, M., van Oevelen, D., Soetaert, K., 2013. Meiofauna metabolism in suboxic sediments: currently overestimated. PLoS One 8: e59289.
Chang, F., Zhouang, L., Li, T., Yan, J., Cao, Q., Cang, S., 2003. Radiolarian fauna in surface sediments of the northeastern East China Sea. Marine Micropaleontology 48: 173194.
Coles, G.P., Whatley, R.C., Moguilevsky, A., 1994. The ostracod genus Krithe from the Tertiary and Quaternary of the North Atlantic. Palaeontology 37: 71120.
Cronin, T.M., Boomer, I., Dwyer, G.S., Rodriguez-Lazaro, J., 2002. Ostracoda and paleoceanography. In: Holmes, J., Chivas, A.R. (Eds.), The Ostracoda: Applications in Quaternary Research. American Geophysical Union, Washington, DC, pp. 99119.
Cronin, T.M., Ikeya, N., 1987. The Omma-Manganji ostracod fauna (Plio-Pleistocene) of Japan and the zoogeography of circumpolar species. Journal of Micropalaeontology 6: 6588.
Cronin, T.M., Kitamura, A., Ikeya, N., Watanabe, M., Kamiya, T., 1994. Late Pliocene climate change 3.4-2.3 Ma: paleoceanographic record from the Yabuta Formation, Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 437455.
Delucchi, K.L., Bostrom, A., 2004. Methods for analysis of skewed data distributions in psychiatric clinical studies: working with many zero values. American Journal of Psychiatry 161: 11591168.
Dingle, R.V., 1995. Continental shelf upwelling and benthic Ostracoda in the Benguela System (southeastern Atlantic Ocean). Marine Geology 122: 207225.
Domitsu, H., Oda, M., 2005. Japan Sea planktic foraminifera in surface sediments: geographical distribution and relationships to surface water mass. Paleontological Research 9: 255270.
Gallagher, S.J., Kitamura, A., Iryu, Y., Itaki, T., Koizumi, I., Hoiles, P.W., 2015. The Pliocene to recent history of the Kuroshio and Tsushima Currents: a multi-proxy approach. Progress in Earth and Planetary Science 2: 17.
Gamo, T., Momoshima, N., Tolmachyov, S., 2001. Recent upward shift of the deep convection system in the Japan Sea, as inferred from the geochemical tracers tritium, oxygen, and nutrients. Geophysical Research Letters 28: 41434146.
Hamano, Y., Krumsiek, K.A.O., Vigliotti, L., Wippern, J.J.M., 1992. Pliocene-Pleistocene magnetostratigraphy of sediment cores from the Japan Sea. In: Proceedings of the Ocean Drilling Program. Vol. 127/128, Part 2: Scientific Results. Ocean Drilling Program, College Station, TX, pp. 969–982.
Herguera, J.C., Berger, W.H., 1991. Paleoproductivity from benthic foraminifera abundance: glacial to postglacial change in the west-equatorial Pacific. Geology 19: 11731176.
Hyun, S., Bahk, J.J., Suk, B.-C., Park, B.-K., 2007. Alternative modes of Quaternary pelagic biosiliceous and carbonate sedimentation: a perspective from the East Sea (Japan Sea). Palaeogeography, Palaeoclimatology, Palaeoecology 247: 8899.
Ikehara, K., 1991. Modern sedimentation of San’in district in the southern Japan Sea. In: Takano, K. (Ed.), Oceanography of Asian Marginal Seas. Elsevier, Amsterdam, pp. 143162.
Ikehara, K., 2015. Marine tephra in the Japan Sea sediments as a tool for paleoceanography and paleoclimatology. Progress in Earth and Planetary Science 2: 36.
Ingle, J.C.J., Suyehiro, K., von Breymann, M.T. (Eds.), 1990). Proceedings of the Ocean Drilling Program. Vol. 128, Initial Reports. Ocean Drilling Program, College Station, TX.
Irizuki, T., Kusumoto, M., Ishida, K., Tanaka, Y., 2007. Sea-level changes and water structures between 3.5 and 2.8 Ma in the central part of the Japan Sea borderland: analyses of fossil Ostracoda from the Pliocene Kuwae Formation, central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 245: 421443.
Itaki, T., 2007. Historical changes of deep-sea radiolarians in the Japan Sea during the last 640 ka. [In Japanese with English abstract.], Fossils (Palaeontological Society of Japan) 82: 4351.
Itaki, T., 2016. Transitional changes in microfossil assemblages in the Japan Sea from the Late Pliocene to Early Pleistocene related to global climatic and local tectonic events. Progress in Earth and Planetary Science 3: 11.
Itaki, T., Ikehara, K., Motoyama, I., Hasegawa, S., 2004. Abrupt ventilation changes in the Japan Sea over the last 30 ky: evidence from deep-dwelling radiolarians. Palaeogeography, Palaeoclimatology, Palaeoecology 208: 263278.
Itaki, T., Komatsu, N., Motoyama, I., 2007. Orbital- and millennial-scale changes of radiolarian assemblages during the last 220 ka in the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 247: 115130.
Jones, B., Manning, D.A.C., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111: 111129.
Kanda, Y., 2013. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48: 452458.
Kato, M., 1992. Benthic foraminifers from the Japan Sea: Leg 128. In: Pisciotto, K.A., Ingle, J.C., Jr., von Breymann, M.T., Barron, J., (Eds.), Proceedings of the Ocean Drilling Program. Vol. 127/128, Part 1: Scientific Results. Ocean Drilling Program, College Station, TX, pp. 365–392.
Kheradyar, T., 1992. Pleistocene planktonic foraminiferal assemblages and paleotemperature fluctuations in Japan Sea, Site 798. In: Pisciotto, K.A., Ingle, J.C., Jr., von Breymann, M.T., Barron, J., (Eds.), Proceedings of the Ocean Drilling Program. Vol. 127/128, Part 1: Scientific Results. College Station, TX, pp. 457–470.
Kitamura, A., 2009. Early Pleistocene evolution of the Japan Sea Intermediate Water. Journal of Quaternary Science 24: 880889.
Kitamura, A., Kimoto, K., 2006. History of the inflow of the warm Tsushima Current into the Sea of Japan between 3.5 and 0.8 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology 236: 355366.
Kitamura, A., Kondo, Y., Sakai, H., Horii, M., 1994. Cyclic changes in lithofacies and molluscan content in the early Pleistocene Omma Formation, central Japan related to the 41,000-year orbital obliquity. Palaeogeography, Palaeoclimatology, Palaeoecology 112: 345361.
Kojima, S., Adachi, K., Kodama, Y., 2007. Formation of deep-sea fauna and changes of marine environment in the Japan Sea. [In Japanese with English abstract.], Fossils (Palaeontological Society of Japan) 82: 6771.
Kumamoto, Y., Yoneda, M., Shibata, Y., Kume, H., Tanaka, A., Uehiro, T., Morita, M., Shitashima, K., 1998. Direct observation of the rapid turnover of the Japan Sea bottom water by means of AMS radiocarbon measurement. Geophysical Research Letters 25: 651654.
Levin, L.A., Etter, R.J., Rex, M.A., Gooday, A.J., Smith, C.R., Pineda, J., Stuart, C.T., Hessler, R., Pawson, D., 2001. Environmental influences on regional deep-sea species diversity. Annual Review of Ecology, Evolution, and Systematics 32: 5193.
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20: PA1003.
Lombari, G., Boden, G., 1985. Modern Radiolarian Global Distributions (Special Publication No. 16A Cushman Foundation for Foraminiferal Research, Washington, DC.
Malyutina, M.V., Brandt, A., 2013. Introduction to SoJaBio (Sea of Japan Biodiversity Studies). Deep Sea Research, Part II: Topical Studies in Oceanography 86–87: 19. doi: 10.1016/j.dsr2.2012.08.011
Mann, M.E., Lees, J.M., 1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change 33: 409445.
Meyers, S.R., 2012. Seeing red in cyclic stratigraphy: spectral noise estimation for astrochronology. Paleoceanography 27: PA3228.
Meyers, S.R., 2014. Astrochron: An R Package for Astrochronology (accessed September 12, 2016).
Moffitt, S.E., Hill, T.M., Roopnarine, P.D., Kennett, J.P., 2015. Response of seafloor ecosystems to abrupt global climate change. Proceedings of the National Academy of Sciences of the United States of America 112: 46844689.
Moodley, L., van der Zwaan, G., Herman, P., Kempers, L., van Breugel, P., 1997. Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista: Sarcodina). Marine Ecology Progress Series 158: 151163.
Motoyama, I., Yamada, Y., Hoshiba, M., Itaki, T., 2016. Radioloarian assemblages in surface sediments of the Japan Sea. Paleontological Research 20: 176206.
Ortakand, M.S., Hasegawa, S., Matsumoto, R., 2015. Biostratigraphic and palaeoecologic evaluation of the Japan Sea’s Joetsu basin based on the study of foraminifera. Paleontological Research 19: 79106.
Ozawa, H., 1996. Ostracode fossils from the late Pliocene to early Pleistocene Omma Formation in the Hokuriku district, central Japan. Science Reports of the Kanazawa University 41: 77115.
Ozawa, H., 2003. Japan Sea ostracod assemblages in surface sediments: their distribution and relationships to water mass properties. Paleontological Research 7: 257274.
Ozawa, H., 2004. Okhotsk Sea ostracods in surface sediments: depth distribution of cryophilic species relative to oceanic environment. Marine Micropaleontology 53: 245260.
Ozawa, H., Domitsu, H., 2010. Early Pleistocene ostracods from the Hamada Formation in the Shimokita Peninsula, northeastern Japan: the palaeobiogeographic significance of their occurrence for the shallow-water fauna. Paleontological Research 14: 118.
Ozawa, H., Kamiya, T., 2001. Palaeoceanographic records related to glacio-eustatic flucuations in the Pleistocene Japan Sea coast based on ostracods from the Omma Formation. Palaeogeography, Palaeoclimatology, Palaeoecology 170: 2748.
Ozawa, H., Kamiya, T., 2005. The effects of glacio-eustatic sea-level change on Pleistocene cold-water ostracod assemblages from the Japan Sea. Marine Micropaleontology 54: 167189.
Piper, D.Z., Isaacs, C.M., 1995. Minor elements in Quaternary sediment from the Sea of Japan: a record of surface-water productivity and intermediate-water redox conditions. Geological Society of America Bulletin 107: 5467.
Piper, D.Z., Isaacs, C.M., 1996. Instability of bottom-water redox conditions during accumulation of Quaternary sediment in the Japan Sea. Paleoceanography 11: 171190.
R Core Team. 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Rimmer, S.M., 2004. Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian basin (USA). Chemical Geology 206: 373391.
Senjyu, T., 1999. The Japan Sea Intermediate Water; its characteristics and circulation. Journal of Oceanography 55: 111122.
Stepanova, A., Lyle, M., 2014. Deep-sea Ostracoda from the Eastern Equatorial Pacific (ODP Site 1238) over the last 460 ka. Marine Micropaleontology 111: 100117.
Sun, Y., Clemens, S.C., An, Z., Yu, Z., 2006. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Reviews 25: 3348.
Tada, R., 1994. Paleoceanographic evolution of the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 487508.
Tada, R., Irino, T., Ikehara, K., Karasuda, A., Sugisaki, S., Xuan, C., Sagawa, T., Itaki, T., Kubota, Y., Lu, S., Seki, A., Murray, R.W., Alvarez-Zarikian, C., and Exp. 346 Scientists. High-resolution and -precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346 (unpublished, under review).
Tada, R., Irino, T., Koizumi, I., 1999. Land-ocean linkages over orbital and millennial timescales recorded in Late Quaternary sediments of the Japan Sea. Paleoceanography 14: 236247.
Tada, R., Murray, R.W., Alvarez Zarikian, C.A., the Expedition 346 Scientists. 2015. Proceedings of the Integrated Ocean Drilling Program. Vol. 346, Expedition Reports. Integrated Ocean Drilling Program, College Station, TX.
Takata, H., 2000. Paleoenvironmental changes during the deposition of the Omma Formation (late Pliocene to early Pleistocene) in Oyabe area, Toyama Prefecture based on the analysis of benthic and planktonic foraminiferal assemblages. [In Japanese with English abstract.], Fossils (Palaeontological Society of Japan) 67: 118.
Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. Proceedings of the IEEE 70: 10551096.
Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology 232: 1232.
Tyson, R.V., Pearson, T.H., 1991. Modern and ancient continental shelf anoxia: an overview. In: Tyson, R.V., Pearson, T.H. (Eds.), Modern and Ancient Continental Shelf Anoxia. Geological Society, London, Special Publications 58: 124.
Usami, K., Ohi, T., Hasegawa, S., Ikehara, K., 2013. Foraminiferal records of bottom-water oxygenation and surface-water productivity in the southern Japan Sea during 160–15 ka: associations with insolation changes. Marine Micropaleontology 101: 1027.
Watanabe, S., Tada, R., Ikehara, K., Fujine, K., Kido, Y., 2007. Sediment fabrics, oxygenation history, and circulation modes of Japan Sea during the Late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology 247: 5064.
Yamada, K., Irizuki, T., Tanaka, Y., 2002. Cyclic sea-level changes based on fossil ostracode faunas from the Upper Pliocene Sasaoka Formation, Akita Prefecture, northeast Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 185: 115132.
Yamada, K., Kuroki, K., Yamaguchi, T. Pliocene and Pleistocene deep-sea ostracodes from Integrated Ocean Drilling Program Site U1426 in the Sea of Japan (Expedition 346). In: Tada, R., Murray, R.W., Alvarez Zarikian, C.A., and the Expedition 346 Scientists (Eds.), Asian Monsoon. Proceedings of the Integrated Ocean Drilling Program. Vol. 346. Integrated Ocean Drilling Program, College Station, TX. (in press).
Yamada, K., Tanaka, Y., Irizuki, T., 2005. Paleoceanographic shifts and global events recorded in late Pliocene shallow marine deposits (2.80–2.55 Ma) of the Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 220: 255271.
Yasuhara, M., Hunt, G., Cronin, T., Hokanishi, N., Kawahata, H., Tsujimoto, A., Ishitake, M., 2012. Climatic forcing of Quaternary deep-sea benthic communities in the North Pacific Ocean. Paleobiology 38: 162179.
Zhao, Q., Whatley, R., 1997. Distribution of the ostracod genera Krithe and Parakrithe in bottom sediments of the East China and Yellow Seas. Marine Micropaleontology 32: 195207.
Zhou, B., Ikeya, N., 2002. The limit of low oxygen level that marine ostracods can cope with: a case study of the Suruga Bay, central Japan. National Science Museum Monographs 22: 8995.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Quaternary Research
  • ISSN: 0033-5894
  • EISSN: 1096-0287
  • URL: /core/journals/quaternary-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Yamaguchi et al supplementary material
Yamaguchi et al supplementary material 1

 Unknown (82 KB)
82 KB
Supplementary materials

Yamaguchi et al supplementary material
Yamaguchi et al supplementary material 2

 Unknown (54 KB)
54 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed