Skip to main content Accessibility help
×
Home

Quaternary structural partitioning within the rigid Tarim plate inferred from magnetostratigraphy and sedimentation rate in the eastern Tarim Basin in China

  • Hong Chang (a1), Zhisheng An (a1), Weiguo Liu (a1), Hong Ao (a1), Xiaoke Qiang (a1), Yougui Song (a1) and Zhongping Lai (a2)...

Abstract

It has been proposed that within the Tarim Basin tectonic activity has been limited since Triassic time. However, on the basis of magnetostratigraphy from the eastern Tarim Basin, which defines the chronology of sedimentation and structural evolution of the basin, we show that the basin interior has been uplifted and partitioned during Quaternary. The magnetostratigraphy was constructed from 2228 samples that yielded acceptable inclination values. Characteristic remnant magnetization (ChRM) with both normal (N1–N11) and reversed (R1–R11) polarity was isolated by thermal demagnetization. The data correlate best with polarity chrons C3r to C1n, which range from 5.39 Ma to recent on the geological time scale 2004 (GTS2004). An abrupt decrease in the sedimentation rate is observed at 1.77 Ma in the Ls1 core. This change does not overlap with known Pleistocene climate-change events. We attribute this sedimentation rate decrease to a structurally controlled local decrease in accommodation space where basin basement uplifts occur. This period of sedimentary environmental change reveals that structural partitioning in the basement of the Tarim Basin occurred since ~ 1.77 Ma, and we speculate that tilting of the Southeast Uplift (a sub-basin unit) within the Tarim Basin began in early Pleistocene time.

Copyright

References

Hide All
Ao, H., Deng, C.L., Dekkers, M.J., and Liu, Q.S. Magnetic mineral dissolution in the Pleistocene fluvial-lacustrine sediments, Nihewan Basin (North China). Earth and Planetary Science Letters 292, (2010). 191200.
Avouac, J.P., Tapponnier, P., Bai, M., Hou, Y., and Wang, G. Active thrusting and folding along the northeastern Tienshan, and rotation of Tarim relative to Dzungaria and Kazakhstan. Journal of Geophysical Research 98, (1993). 67556804.
Beaumont, C. Foreland basins. Geophysical Journal of the Royal Astronomical Society 65, (1981). 291329.
Besse, J., Courtillot, V., Pozzi, J.P., Westphal, M., and Zhou, Y.X. Paleomagnetic estimates of crustal shortening in the Himalayan thrusts and Zanbo suture. Nature 311, (1984). 621626.
Blair, T.C., and Bilodeau, W.L. Development of tectonic cyclothems in rift, pull-apart, and foreland basins: sedimentary response to episodic tectonism. Geology 16, (1988). 517520.
Burbank, D.W., and Beck, R.A. Model of aggradation versus progradation in the Himalayan Foreland. Geologische Rundschau 80, (1991). 623638.
Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region, Regional Geology of Xinjiang Uygur Autonomous Region. BGMRXYAR (1993). Geological Publication House, Beijing.
Chang, H., Ao, H., An, Z.S., Fang, X.M., Song, Y.G., and Qiang, X.K. Magnetostratigraphy of the Suerkuli Basin indicates Pliocene (3.2 Ma) activity of the middle Altyn Tagh Fault, northern Tibetan Plateau. Journal of Asian Earth Sciences 44, (2012). 169175.
Chang, H., An, Z.S., Liu, W.G., Qiang, X.K., Song, Y.G., and Ao, H. Magnetostratigraphic and paleoenvironmental records for a Late Cenozoic sedimentary sequence drilled from Lop Nor in the eastern Tarim Basin. Global and Planetary Changes 80–81, (2012). 113122.
Chen, C.M., Lu, H.F., Jia, D., and Xie, X.A. Tertiary–Quaternary sedimentation, tectonic deformation in Tarim basin and its implications to petroleum geology. Acta Sedimentologica Sinica 16, (1998). 113116. (in Chinese with abstract in English)
Chen, J., Burbank, D.W., Scharer, K.M., Sobel, E., Yin, J.H., Rubin, C., and Zhao, R.B. Magnetochronology of the upper Cenozoic strata in the southwestern Chinese Tian Shan: rates of Pleistocene folding and thrusting. Earth and Planetary Science Letters 195, (2002). 113130.
Collinson, D.W. Methods in Rock Magnetism and Palaeomagnetism: Techniques and Instruments. (1983). Chapman & Hall, London.
Dong, Z.B., Lv, P., Qian, G.Q., Xia, X.C., Zhao, Y.J., and Mu, G.J. Research progress in China's Lop Nur. Earth-Science Reviews 111, (2012). 142153.
Dupont-Nivet, G., and Butler, R.F. Paleomagnetism indicates no Neogene vertical axis rotations of the northeastern Tibetan Plateau. Journal of Geophysical Research 108, (2003). 2386
Fang, X.M., Zhang, W.L., Meng, Q.Q., Gao, J.P., Wang, X.M., King, J., Song, C.H., Dai, S., and Miao, Y.F. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on the tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters 258, (2007). 293306.
Gao, R., Huang, D.D., Li, D.Y., Qian, G.H., Li, Y.K., Kuang, C.Y., Li, Q.S., Li, P.W., Feng, R.J., and Guan, Y. Deep seismic reflection profile across the juncture zone between the Tarim Basin and the West Kunlun Mountains. Chinese Science Bulletin 45, (2000). 22812286.
Garzanti, E., Baud, A., and Mascale, G. Sedimentary record of the northward flight on India and its collision with Eurasia (Ladakh, Himalay, India). Geodinamica Acta 1, (1987). 297312.
Geomorphology Group of Xinjiang Comprehensive Investigation (GGXCI), Geomorphology of Xinjiang. (1978). Science Press, Beijing. (In Chinese)
Gradstein, F., Ogg, J., and Smith, A. A Geologic Time Scale 2004. (2004). Elsevier Inc., Cambridge.
Guo, Z.J., and Zhang, Z.C. The Geological interpretation of the forming and evolution of Lop Nur, NW China. Geological Journal of University 1, (1995). 8287. (In Chinese with English abstract)
Gupta, S. Tectonic control on paleovalley incision at the distal margin of the early Tertiary Alpine Foreland Basin, southeast France. Journal of Sedimentary Research 67, (1997). 10301043.
Hao, Y.C., Guan, S.Z., Ye, L.S., Huang, Y.Y., Zhou, Y.C., and Guan, S.Q. Neogene stratigraphy and paleogeography in the western Tarim basin. Acta Geologica Sinica 76, (2002). 289298. (in Chinese with abstract in English)
Heermance, R.V., Chen, J., Burbank, D.W., and Wang, C.S. Chronology and tectonic controls of Late Tertiary deposition in the southwestern Tian Shan foreland, NW China. Basin Research 19, (2007). 599632.
Hendrix, M.S., Dumitru, T.A., and Graham, S.A. Late-Oligocene–Early-Miocene unroofing in the Chinese Tien Shan: an early effect of the India–Asia collision. Geology 22, (1994). 487490.
Huang, B.C., Piper, J.D.A., Peng, S.T., Liu, T., Li, Z., Wang, Q.C., and Zhu, R.X. Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, Western China. Earth and Planetary Science Letters 251, (2006). 346364.
Institute of Mineral Deposits, Chinese Academy of Geological Sciences (IMDCAGS). (1981). Linear Structure Map of Chinese Lands (1:6 000 000) (In Chinese). Sinomap Press, Beijing.
Jia, C.Z. Structural feature and law of hydrocarbon accumulation in the Tarim basin. Xinjiang Petroleum Geology 20, (1993). 177183. (in Chinese with abstract in English)
Jia, C.Z. Tectonic Characteristics of Tarim Basin in China (in Chinese). (1997). Petroleum Industry Publishing House, Beijing.
Jia, C.Z., and Wei, G.Q. Structural characteristics and petroliferous features of Tarim Basin. Chinese Science Bulletin 47 Suppl., (2002). 111.
Jin, X.C., Wang, J., Chen, B.W., and Ren, L.D. Cenozoic depositional sequences in the piedmont of the west Kunlun and their paleogeographic and tectonic implications. Journal of Asian Earth Sciences 21, (2003). 755765.
Kao, H., Gao, R., Rau, R., Shi, D.N., Chen, R.Y., Guan, Y., and Wu, F.T. Seismic image of the Tarim basin and its collision with Tibet. Geology 29, (2001). 575578.
Kirschvink, J.L. The least squares line and plane and analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, (1980). 699712.
Li, Q.C., and Xu, B.R. The characteristic and geological meaning of Curie isothermic surface under the Tarim basin. Oil Geology Prospect 34, (1999). 590594. (in Chinese with abstract in English)
Li, J.J., Fang, X.M., Ma, H.Z., Zhu, J.J., Pan, B.T., and Chen, H.L. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic. Science in China 39, (1996). 380389.
Li, J.J., Fang, X.M., Van der Voo, R., Zhu, J.J., Niocaill, C.M., Cao, J.X., Zhong, W., Chen, H.L., Wang, J.L., Wang, J.M., and Zhang, Y.C. Late Cenozoic magnetostratigraphy (11–0 Ma) of the Dongshanding and Wangjiashan sections in the Longzhong Basin, western China. Geologie en Mijnbouw 76, (1997). 121134.
Liang, K. The environmental evolution of Lake Lop Nor as seen on the remote sensing images. Remote Sensing of Environment China 2, 4 (1987). 285295. (In Chinese with abstract in English)
Lisiecki, L.E., and Raymo, M.E. Plio-Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quaternary Science Reviews 26, (2007). 5669.
Liu, C.L., Wang, M.L., Jiao, P.C., Li, S.D., and Chen, Y.Z. Features and formation mechanism of faults and potash-forming effect in the Lop Nur Salk Lake, Xinjiang, China. Acta Geologica Sinica 80, (2006). 936943.
Lu, H.J., and Xiong, S.F. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth and Planetary Science Letters 288, (2009). 539550.
Matte, P., Tapponnier, P., Arnaud, N., Bourjot, L., Avouac, J.P., Vidal, P., Liu, Q., Pan, Y.S., and Wang, Y. Tectonics of western Tibet, between the Tarim and the Indus. Earth and Planetary Science Letters 142, (1996). 311330.
McCann, T., and Saintot, A. Tracing tectonic deformation using the sedimentary record: an overview. McCann, T., and Saintot, A. Tracing Tectonic Deformation Using the Sedimentary Record. (2003). 128.
Meng, G.X., Yan, J.Y., Lv, Q.T., Jiao, P.C., Yan, H., Liu, C.F., and Liu, C.L. New discovery of Lop Nur salt basin structure and its significance for potash deposit exploration. Mineral Deposits 29, (2010). 609615.
Molnar, P., and England, P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?. Nature 346, (1990). 2934.
Mu, G.J., Bao, A.M., and Hao, J. Geotectonic environment of the tail-end-lakes evolution, Xinjiang, China. Arid Land Geography 24, (2001). 193200. (in Chinese with abstract in English)
Negredo, A.M., Replumaz, A., Villaseñor, A., and Guillot, S. Modeling the evolution of continental subduction processes in the Pamir–Hindu Kush region. Earth and Planetary Science Letters 259, (2007). 212225.
Nott, J., and Roberts, R.G. Time and process rates over the past 100 m.y.: a case for dramatically increased landscape denudation rates during the late Quaternary in northern Australia. Geology 24, (1996). 883887.
Rowley, D.B., and Currie, B.S. Paleo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, (2006). 677681.
Scharer, K.M., Burbank, D.W., Chen, J., Weldon, R.J. II Konematic models of fluvial terraces over active detachment fold: constraints on the growth mechanism of the Kashi–Atushi fold system, Chinese Tian Shan. Geological Society of America Bulletin 118, (2006). 10061028.
Searle, M.P., Windley, B.F., Coward, M.P., Cooper, D.J.W., Rex, A.J., Rex, D., Li, T.D., Xiao, X.C., Jan, M.Q., Thakur, V.C., and Kumar, S. The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin 98, (1987). 678701.
Sklar, L.S., and Dittrich, W.E. Sediment and rock strength controls on river incision into bedrock. Geology 29, (2001). 10871090.
Sobel, E.R., Chen, J., and Heermance, R.V. Late Oligocene–Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: implications for Neogene shortening rate variations. Earth and Planetary Science Letters 247, (2006). 7081.
Sun, Z.C., Feng, X.J., Li, D.M., Yang, F., Qu, Y.H., and Wang, H.J. Cenozoic Ostracoda and palaeoenvironments of the northeastern Tarim Basin, western China. Palaeogeography Palaeoclimatology Palaeoecology 148, (1999). 3750.
Sun, J.M., Zhang, L.Y., Deng, C.L., and Zhu, R.X. Evidence for enhanced aridity in the Tarim Basin of China since 5.3 Ma. Quaternary Science Reviews 27, (2008). 10121023.
Tankard, A.J., Welsink, H.J., and Jenkins, W.A.W. Structural styles and stratigraphy of the Jeanne d'Arc Basin, Grand Banks of Newfoundland. Tankard, A.J., and Balkwill, H.R. Extensional Tectonics and Stratigraphy of North Atlantic Margins. AAPG Memoir 46, (1989). 265282.
Tapponnier, P., Xu, Z.Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Yang, J.S. Oblique stepwise rise and growth of the Tibetan Plateau. Science 294, (2001). 16711677.
Wang, S. A preliminary study on neotectonic movement in the Lop Nur and surrounding regions. Xia, X. Scientific Exploration and Study of the Lop Nor. (1987). Science Press, Beijing. 3751.
Wang, W. The geological history of the Lop Nor and surrounding regions. Xia, X. Scientific Exploration and Study of the Lop Nor. (1987). Science Press, Beijing. 1619.
Wang, M., and Liu, C. Saline Lake Potash Resources in the Lop Nur. (2001). Geological Publishing House, Beijing.
Wang, L.S., Li, C., and Yang, C. The lithospheric thermal structure beneath Tarim Basin, western China. Acta Geophysica Sinica 39, 6 (1996). 794803. (in Chinese with abstract in English)
Wang, E., Van, J.L., and Liu, J.Q. Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area: constraints on timing of uplift of northern margin of the Tibetan Plateau. Journal of Geophysical Research 108, (2003). 2401 http://dx.doi.org/10.1029/2002JB001877
Wang, E., Xu, F.Y., Zhou, J.X., Wan, J.L., and Burchfield, B.C. Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river system. Geological Society of America Bulletin 118, (2006). 349365.
Wang, C.S., Zhao, X.X., Liu, Z.F., Lippert, P., Graham, S.A., Coe, R.S., Yi, H.S., Zhu, L.D., Liu, S., and Li, Y.L. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America 105, (2008). 49874992.
Windley, B.F., Allen, M.B., Zhang, C., Zhao, Z.Y., and Wang, G.R. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Ranges, central Asia. Geology 18, (1990). 128131.
Wittlinger, G., Tapponnier, P., Poupinet, G., Jiang, M., Shi, D.N., Herquel, G., and Masson, F. Topographic evidence for localized lithospheric shear along the Altyn Tagh Fault. Science 28, (1998). 7476.
Xiao, X.C., Liu, X., Gao, R. et al. The crustal structure and tectonic evolution of southern Xinjiang China. (2004). The Commercial Press, Beijing. 1270.
Xiao, G.Q., Guo, Z.T., Dupont-Nivet, G., Lu, H.Y., Wu, N.Q., Ge, J.Y., Hao, Q.Z., Peng, S.Z., Li, F.J., Abels, H.A., and Zhang, K.X. Evidence for northeastern Tibetan Plateau uplift between 25 and 20 Ma in the sedimentary archive of the Xining Basin, Northwestern China. Earth and Planetary Science Letters 317–318, (2012). 185195.
Yan, S., and Mu, G.J. The environmental evolution of the Tarim Basin in late Cenozoic era. Arid Land Geography 13, (1990). 19. (in Chinese with abstract in English)
Yan, S., Mu, G.J., Xu, Y.Q., and Zhao, Z.H. Quaternary environmental evolution of the Lop Nur region, China. Acta Geographica Sinica 53, (1998). 332340. (in Chinese with abstract in English)
Yang, Y.Q., and Liu, M. Cenozoic deformation of the Tarim plate and the implications for mountain building in the Tibetan Plateau and the Tian Shan. Tectonics 21, (2002). 1059 http://dx.doi.org/10.1029/2001TC001300
Yin, A., Rumelhart, P.E., Butler, R., Cowgill, E., Harrison, T.M., Foster, D.A., Ingersoll, R.V., Zhang, Q., Zhou, X.Q., Wang, X.F., Hanson, A., and Raza, A. Tectonic history of the Altyn Tagh fault system in northern Tibetan. Geological Society of America Bulletin 114, (2002). 12571295.
Yin, A., Dang, Y.Q., Zhang, M., Chen, X.H., and McRivette, M.W. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): structural geology, sedimentation, and regional tectonic reconstruction. Geological Society of America Bulletin 120, (2008). 847876.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, (2001). 686693.
Zhang, P.Z., Molnar, P., and Downs, W.R. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410, (2001). 891897.
Zheng, H.B., Powell, C.M., An, Z.S., Zhou, J., and Dong, G.R. Pliocene uplift of the northern Tibetan Plateau. Geology 28, (2000). 715718.
Zhong, W., Tuerxun, Keyimu, Shu, Q., and Wang, L.G. Paleoclimatic and paleoenvironmental evolution since about 25 Ka BP in the Taitema Lake area, South Xinjiang. Arid Land Geography 28, (2005). 183187. (in Chinese with abstract in English)
Zijderceld, J.D.A. A.C. demagnetization of rock: analysis of results. Collinson, D.W., Creer, K.M., and Runcorn, S.K. Methods in Paleomagnetism. (1967). Elsevier, New York. 254286.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed