Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T13:19:44.696Z Has data issue: false hasContentIssue false

Stratigraphy and evolution of the late Pleistocene (MIS 5) coastal Barrier III in southern Brazil

Published online by Cambridge University Press:  15 January 2024

Renato Pereira Lopes*
Affiliation:
Universidade Federal do Rio Grande do Sul, Instituto de Geociências. Avenida, Bento Gonçalves, 9500, CEP, 91540-000, Agronomia, Porto Alegre, RS, Brazil
Jamil Corrêa Pereira
Affiliation:
Museu Coronel Tancredo Fernandes de Mello, Rua Barão do Rio Branco, 467, CEP, 96230-000, Santa Vitória, do Palmar, RS, Brazil
Felipe Caron
Affiliation:
Universidade Federal do Rio Grande do Sul, Departamento Interdisciplinar, Centro de Estudos Costeiros, Limnológicos e Marinhos, Avenida Tramandaí, 976, 95625-000, Imbé, RS, Brazil
Sergio Rebello Dillenburg
Affiliation:
Universidade Federal do Rio Grande do Sul, Instituto de Geociências. Avenida, Bento Gonçalves, 9500, CEP, 91540-000, Agronomia, Porto Alegre, RS, Brazil
Maria Luiza Corrêa da Câmara Rosa
Affiliation:
Universidade Federal do Rio Grande do Sul, Instituto de Geociências. Avenida, Bento Gonçalves, 9500, CEP, 91540-000, Agronomia, Porto Alegre, RS, Brazil
Eduardo Guimarães Barboza
Affiliation:
Universidade Federal do Rio Grande do Sul, Instituto de Geociências. Avenida, Bento Gonçalves, 9500, CEP, 91540-000, Agronomia, Porto Alegre, RS, Brazil
Jairo Francisco Savian
Affiliation:
Universidade Federal do Rio Grande do Sul, Instituto de Geociências. Avenida, Bento Gonçalves, 9500, CEP, 91540-000, Agronomia, Porto Alegre, RS, Brazil
André Oliveira Sawakuchi
Affiliation:
Universidade de São Paulo, Instituto de Geociências, Laboratório de Espectrometria Gama e Luminescência (LEGaL). Rua do Lago, 562,05508-080, São Paulo, SP, Brazil
Sonia Hatsue Tatumi
Affiliation:
Universidade Federal de São Paulo, Campus Baixada Santista, CEP 11070-100, Santos, São Paulo, SP, Brazil
Márcio Yee
Affiliation:
Universidade Federal de São Paulo, Campus Baixada Santista, CEP 11070-100, Santos, São Paulo, SP, Brazil
*
Corresponding author: Renato Pereira Lopes; Email: paleonto_furg@yahoo.com.br

Abstract

The structure and origin of the Pleistocene (Marine Isotope Stage [MIS] 5) coastal Barrier III in southern Brazil were investigated through analysis of lithofacies, numerical ages, and ground-penetrating radar (GPR) data obtained in outcrops and subsurface deposits. The stratigraphic succession is characteristic of transgressive barriers, with muddy lagoon bottom facies unconformably overlying an older unit (Barrier II) and overlain by landward-dipping lagoon margin and aeolian facies. The back-barrier lagoon was filled with sediments and shells transferred from the foreshore through overwash and/or inlets during the MIS 5e transgressive-high-stand phase, with a higher sea level that reached about +6 to +7 m relative to the present. Marine sediments and shells on the seaward side of the barrier dated to ~100–106 ka indicate another high stand at +4 to +5.1 m during MIS 5c. One shell dated to ~87 ka and aeolian deposits dated to ~82 and ~85 ka suggest a third high stand during MIS 5a that reached at least −2 m relative to the present. The two (possibly three) juxtaposed marine deposits show that Barrier III is a more complex unit than previously recognized, built by successive orbitally forced eustatic sea-level oscillations also recorded in other deposits along the Brazilian coast and worldwide.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abreu, V.S., Neal, J., Vail, P.R., 2010. Integration of sequence stratigraphy concepts. In: Abreu, V.S., Neal, J., Bohacs, K.M., Kalbas, J.L. (Eds.), Sequence Stratigraphy of Siliciclastic Systems—The ExxonMobil Methodology: Atlas of Exercises. SEPM, Tulsa, OK, pp. 209224.Google Scholar
Angulo, R.J., Lessa, G.C., Souza, M.C., 2006. A critical review of mid- to late-Holocene sea level fluctuations on the eastern Brazilian coastline. Quaternary Science Reviews 25, 486506.CrossRefGoogle Scholar
Armon, J.W., McCann, S.B., 1979. Morphology and landward sediment transfer in a transgressive barrier island system, southern Gulf of St. Lawrence, Canada. Marine Geology 31, 333344.CrossRefGoogle Scholar
Asmus, H.E., Baisch, P.R., 1983. Geological evolution of the Brazilian continental margin. Episodes 4, 39.CrossRefGoogle Scholar
Barboza, E.G., Ayup-Zouain, R.N., Tomazelli, L.J., Rosa, M.L.C.C., Ferreira, H.P.L., 2005. Paleocanal Pleistocênico na Barreira III entre o Chuí e o Balneário Hermenegildo—Rio Grande do Sul. In: X Congresso da Congresso da Associação Brasileira de Estudos do Quaternário, 2005, Guarapari, Resumos (CD-ROM).Google Scholar
Barboza, E.G., Dillenburg, S.R., Ritter, M.N., Angulo, R.J., da Silva, A.B., Rosa, M.L.C.C., Caron, F., de Souza, M.C., 2021b. Holocene sea-level changes in southern Brazil based on high-resolution radar stratigraphy. Geosciences 11, 326.CrossRefGoogle Scholar
Barboza, E.G., Dillenburg, S.R., Rosa, M.L.C.C., Caron, F., Lopes, R.P., Watanabe, D.S.Z., Tomazelli, L.J., 2021a. Sistemas deposicionais e evolução geológica da planície costeira entre La Coronilla e Cabo de Santa Marta (Bacia de Pelotas): uma revisão. In: Jelinek, A.R., Sommer, C.A. (Eds.), Contribuições à Geologia do Rio Grande do Sul e de Santa Catarina. Editora Compasso Lugar Cultura, Porto Alegre, pp. 455468.CrossRefGoogle Scholar
Barboza, E.G., Rosa, M.L.C.C., Ayup-Zouain, R.N., 2008. Cronoestratigrafia da Bacia de Pelotas: uma revisão das sequências deposicionais. Gravel 6, 125138.Google Scholar
Barboza, E.G., Rosa, M.L.C.C., Dillenburg, S.R., Watanabe, D.S.Z., Esteves, T., Martins, E.M., Gruber, N.L.S., 2018. Diachronic condition between maximum transgressive and maximum eustatic Sea-level in Holocene: subsidies for coastal management. Special issue, Journal of Coastal Research 85, 446450.CrossRefGoogle Scholar
Barboza, E.G., Rosa, M.L.C.C., Hesp, P.A., Dillenburg, S.R., Tomazelli, L.J., Ayup-Zouain, R.N., 2011. Evolution of the Holocene Coastal Barrier of Pelotas Basin (southern Brazil)—a new approach with GPR data. Special issue, Journal of Coastal Research 64, 646650.Google Scholar
Barlow, N.L.M., McClymont, E.L., Whitehouse, P.L., Stokes, C.R., Jamieson, S.S.R., Woodroffe, S.A., Bentley, M.J., et al., 2018. Lack of evidence for a substantial sea-level fluctuation within the last interglacial. Nature Geosciences 11, 627634.CrossRefGoogle Scholar
Barreto, A.M.F., Angulo, R.J., Tatumi, S.H., Watanabe, S., Ayta, W.E.F., 1999a. Datações por luminescência (TL) de sedimentos da planície costeira de Paranaguá, estado do Paraná. In: VII Congresso da Associação Brasileira de Estudos do Quaternário, Porto Seguro, 1999, Anais, pp. 13.Google Scholar
Barreto, A.M.F., Bezerra, F.H.R., Suguio, K., Tatumi, S.H., Yee, M., Paiva, R.P., Munita, C.S., 2002. Late Pleistocene marine terrace deposits in northeastern Brazil: sea-level change and tectonic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 179, 5769.CrossRefGoogle Scholar
Barreto, A.M.F., Tatumi, S.H., Suguio, K., Oliveira, P.E., Ayta, W.E.F., Watanabe, S., 1999b. As dunas costeiras inativas do Rio Grande do Norte datadas por termoluminescência e implicações paleoambientais. In: VII Congresso da ABEQUA, Porto Seguro, 1999, Anais, pp. 13.Google Scholar
Bateman, M.D., Carr, A.S., Dunajko, A.C., Holmes, P.J., Roberts, D.L., McLaren, S.J., Bryant, R.G. et al., 2011. The evolution of coastal barrier systems, a case study of the Middle-Late Pleistocene Wilderness barriers, South Africa. Quaternary Science Reviews 30, 6381.CrossRefGoogle Scholar
Belknap, D.F., Kraft, J.C., 1985. Influence of antecedent geology on stratigraphic preservation potential and evolution of Delaware's barrier systems. Marine Geology 63, 235262.CrossRefGoogle Scholar
Bettinelli, M., Dillenburg, S.R., Lopes, R.P., Caron, F., 2018. Pleistocene molluscan assemblage in the southern coastal plain of Rio Grande do Sul, Brazil: implications in the evolution of a barrier-lagoon system. Journal of South American Earth Sciences 86, 200215.CrossRefGoogle Scholar
Bezerra, I.S.A., Nogueira, A.C.R., Guimarães, J.T.F., Truckenbrodt, W., 2015. Late Pleistocene sea-level changes recorded in tidal and fluvial deposits from Itaubal Formation, onshore portion of the Foz do Amazonas Basin, Brazil. Brazilian Journal of Geology 45(Suppl 1), 6378.CrossRefGoogle Scholar
Biancini da Silva, A., Barboza, E.G., Rosa, M.L.C.C., Dillenburg, S.R., 2014. Meandering fluvial system influencing the evolution of a Holocene regressive barrier in southern Brazil. Special issue, Journal of Coastal Research 70, 687692.Google Scholar
Bittencourt, A.C.S.P., Martin, L., Vilas Boas, G.S., Flexor, J.M., 1979. The marine formations of the coast of the State of Bahia (Brazil). In: Proceedings of the I International Symposium on Coastal Evolution in the Quaternary, São Paulo, 1978, pp. 232253.Google Scholar
Bittencourt, V.J., Dillenburg, S.R., Manzolli, R.P., Barboza, E.G., 2020. Control factors in the evolution of Holocene coastal barriers in southern Brazil. Geomorphology 360, 107180.CrossRefGoogle Scholar
Blakemore, A.G., Murray-Wallace, C.V., Lachlan, T.J., 2014. First recorded evidence of subaqueously-deposited late Pleistocene interstadial (MIS 5c) coastal strata above present sea level in Australia. Marine Geology 355, 377383.CrossRefGoogle Scholar
Boothroyd, J.C., Friedrich, N.E., McGinn, S.R., 1985. Geology of microtidal coastal lagoons: Rhode Island. Marine Geology 63(1–4), 3576.CrossRefGoogle Scholar
Boyd, R., 2010. Transgressive wave-dominated coasts. In: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, St. John's, NL, pp. 265294.Google Scholar
Bradley, R.S., 1999. Paleoclimatology – Reconstructing Climates of the Quaternary. 2nd ed. Elsevier, Amsterdam.Google Scholar
Buchmann, F.S.C., Tomazelli, L.J., 2003. Relict nearshore shoals of Rio Grande do Sul, southern Brazil: origin and effects on nearby modern beaches. Journal of Coastal Research 35, 318322.Google Scholar
Carassai, J.J., Lavina, E.L.C., Chemale, F. Jr., Girelli, T.J., 2019. Provenance of heavy minerals for the Quaternary Coastal Plain of southernmost Brazil (Rio Grande do Sul State). Journal of Coastal Research 35, 295304.CrossRefGoogle Scholar
Caron, F., 2007. Depósitos sedimentares associados à desembocadura do Arroio Chuí (planície costeira do Rio Grande do Sul) e suas relações com as variações do nível do mar durante o Holoceno. MSc dissertation, Programa de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul. https://lume.ufrgs.br/handle/10183/8813.Google Scholar
Caron, F., 2014. Estratigrafia e evolução da barreira holocênica na região costeira de Santa Vitória Do Palmar, Planície Costeira do Rio Grande Do Sul, Brasil. PhD thesis, Programa de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul. https://lume.ufrgs.br/handle/10183/88625.Google Scholar
Cattaneo, A., Steel, R.J., 2003. Transgressive deposits: a review of their variability. Earth-Science Reviews 62, 187228.CrossRefGoogle Scholar
Cawthra, H.C., Jacobs, Z., Compton, J.S., Fisher, E.C., Karkanas, P., Marean, C.W., 2018. Depositional and sea-level history from MIS 6 (Termination II) to MIS 3 on the southern continental shelf of South Africa. Quaternary Science Reviews 181, 156172.CrossRefGoogle Scholar
Chappel, J., Shackleton, N.J., 1986. Oxygen isotopes and sea level. Nature 324, 137140.CrossRefGoogle Scholar
Chemale, F. Jr., Lavina, E.L.C., Carassai, J.J., Girelli, T.J., Lana, C., 2021. Andean orogenic signature in the Quaternary sandy barriers of Southernmost Brazilian Passive Margin–Paradigm as a source area. Geoscience Frontiers 12, 101119.CrossRefGoogle Scholar
Closs, D.L., 1970. Estratigrafia da Bacia de Pelotas, Rio Grande do Sul. Iheringia (Série Geologia) 3, 375.Google Scholar
Corrêa, I.C.S., Ponzi, V.R.A., 1978. Depósitos de calcário biodetrítico das regiões do Albardão e Mostardas na plataforma interna do Rio Grande do Sul. In: XXX Congresso Brasileiro de Geologia, Recife, Anais, 2, 851866.Google Scholar
Coyne, M.K., Jones, B., Ford, D., 2007. Highstands during Marine Isotope Stage 5: evidence from the Ironshore Formation of Grand Cayman, British West Indies. Quaternary Science Reviews 26, 536559.CrossRefGoogle Scholar
Creveling, J.R., Mitrovica, J.X., Clark, P.U., Waelbroeck, C., Pico, T., 2017. Predicted bounds on peak global mean sea level during marine isotope stages 5a and 5c. Quaternary Science Reviews 163, 193208.CrossRefGoogle Scholar
Curray, J.R., 1964. Transgression and regression. In: Miller, R.L. (Ed.), Papers in Marine Geology: Shepard Commemorative Volume. Macmillan, New York, pp. 175203.Google Scholar
Cutler, K.B., Edwards, R.L., Taylor, F.W., Cheng, H., Adkins, J., Gallup, C.D., Cutler, P.M., Burr, G.S., Bloom, A.L., 2003. Rapid sea-level fall and deep-ocean temperature change since the last interglacial period. Earth and Planetary Science Letters 206, 253271.CrossRefGoogle Scholar
Dalrymple, R.W., 2010. Interpreting sedimentary successions: facies, facies analysis and facies models. In: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4. Geological Association of Canada, St. John's, NL, pp. 318Google Scholar
Daniels, J., Roberts, R., Vendl, M., 1995. Ground penetrating radar for the detection of liquid contaminants. Journal of Applied Geophysics 33, 195207.CrossRefGoogle Scholar
Davis, R.A. Jr., 1994. Barrier-islands—a geologic overview. In: Davis, R.A. Jr. (Ed.), Geology of the Holocene Barrier Island Systems. Springer-Verlag, Berlin, pp. 946.CrossRefGoogle Scholar
Deery, J.R., Howard, J.D., 1977. Origin and character of washover fans on the Georgia coast, U.S.A. (1). Gulf Coast Association of Geological Societies Transactions 27, 259271.Google Scholar
Delaney, P.J.V., 1965. Fisiografia e Geologia de Superfície da Planície Costeira do Rio Grande do Sul. Publicação Especial 6. Escola de Geologia da UFRGS, Porto Alegre.Google Scholar
Dillenburg, S.R., 1996. O potencial de preservação dos registros sedimentares do sistema deposicional Laguna/Barreira IV na costa do estado do Rio Grande do Sul. Notas Técnicas 9, 111.Google Scholar
Dillenburg, S.R., Barboza, E.G., 2014. The strike-fed sandy coast of Southern Brazil. In: Martini, I.P., Wanless, H.R. (Eds.), Sedimentary Coastal Zones from High to Low Latitudes: Similarities and Differences. Geological Society of London, Special Publication 388, 333352.Google Scholar
Dillenburg, S.R., Barboza, E.G., Rosa, M.L.C.C., Caron, F., Bitencourt, V.B., 2020a. Changes in the littoral drift of the Uruguayan coast during the Holocene and its influence in the continuing erosion in southern Brazil. Special issue, Journal of Coastal Research 95, 453457.CrossRefGoogle Scholar
Dillenburg, S.R., Barboza, E.G., Rosa, M.L.C.C., Caron, F., Cancelli, R., Santos Fischer, C.B., Lopes, R.P., Ritter, M.N., 2020b. Sedimentary records of Marine Isotopic Stage 3 (MIS 3) in southern Brazil. Geo-Marine Letters 40, 10991108.CrossRefGoogle Scholar
Dillenburg, S.R., Barboza, E.G., Rosa, M.L.C.C., Caron, F., Sawakuchi, A., 2017. The complex prograded Cassino barrier in southern Brazil: geological and morphological evolution and records of climatic, oceanographic and sea-level changes in the last 7–6 ka. Marine Geology 390, 106119.CrossRefGoogle Scholar
Dillenburg, S.R., Barboza, E.G., Tomazelli, L.J., Hesp, P.A., Clerot, L.C.P., Zouain, R.N.A., 2009. The Holocene coastal barriers of Rio Grande do Sul. In: Dillenburg, S.R., Hesp, P.A. (Eds.), Geology and Geomorphology of Holocene Coastal Barriers of Brazil. Springer, Berlin, pp. 5391.CrossRefGoogle Scholar
Dillenburg, S.R., Hesp, P., 2009. Geology and Geomorphology of Holocene Coastal Barriers of Brazil. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Dillenburg, S.R., Roy, P.S., Cowell, P.J., Tomazelli, L.J., 2000. Influence of antecedent topography on coastal evolution as tested by the Shoreface Translation-Barrier Model (STM). Journal of Coastal Research 16, 7181.Google Scholar
Dillenburg, S.R., Tomazelli, L.J., Barboza, E.G., 2004. Barrier evolution and placer formation at Bujuru southern Brazil. Marine Geology 203, 4356.CrossRefGoogle Scholar
Dodge, D.E., Fairbanks, R.G., Benninger, L.K., Maurasse, F., 1983. Pleistocene sea levels from raised coral reefs of Haiti. Science 219, 14231425.CrossRefGoogle ScholarPubMed
Doralle, J.A., Onac, B.P., Fornós, J.J., Ginés, J., Ginés, A., Tuccimei, P., Peate, D.W., 2010. Sea-level highstand 81,000 years ago in Mallorca. Science 327, 860863.CrossRefGoogle Scholar
Dumas, B., Hoang, C.T., Raffy, J., 2006. Record of MIS 5 sea-level highstands based on U/Th dated coral terraces of Haiti. Quaternary International 145–146, 106118.CrossRefGoogle Scholar
Dutton, A., Lambeck, K., 2012. Ice volume and sea level during the last interglacial. Science 337, 216219.CrossRefGoogle ScholarPubMed
Farrell, K.M., Harris, W.B., Mallinson, D.J., Culver, S.J., Riggs, S.R., Pierson, J., Self-Trail, J.M., Lautier, J.C., 2012. Standardizing texture and facies codes for a process-based classification of clastic sediment and rock. Journal of Sedimentary Research 82:364378.CrossRefGoogle Scholar
Figueiredo, A.G. Jr., 1975. Geologia dos depósitos calcários biodetríticos da plataforma continental do Rio Grande do Sul. MSc dissertation, Programa de Pós-graduação em Geociências, Universidade Federal do Rio Grande do Sul.Google Scholar
Fisher, W.L., McGowen, J.H., 1967. Depositional Systems in Wilcox Group Eocene of Texas and Their Relationship to Occurrence of Oil and Gas. Texas Bureau of Economic Geology, Circular no. 67-4. University of Texas, Austin, pp. 105125.Google Scholar
Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing, Austin, TX.Google Scholar
Folk, R.L., Ward, W.C., 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27(1), 326.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations, Quaternary Geochronology, 11, 127.CrossRefGoogle Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 41, 339364.CrossRefGoogle Scholar
Galiforni-Silva, F., Wijnberg, K.M., Hulscher, S.J.M.H., 2020. Storm-induced sediment supply to coastal dunes on sand flats. Earth Surface Dynamics 8, 335350.CrossRefGoogle Scholar
Gallup, C.D., Lawrence Edwards, R., Johnson, R.G., 1994. The timing of high sea levels over the past 200,000 years. Science 263, 796800.CrossRefGoogle ScholarPubMed
Giannini, P.C.F., Sawakuchi, A.O., Martinho, C.T., Tatumi, S.H., 2007. Eolian depositional episodes controlled by Late Quaternary relative sea level changes on the Imbituba–Laguna coast (southern Brazil). Marine Geology 237, 143168.CrossRefGoogle Scholar
Gowan, E.J., Rovere, A., Ryan, D.D., Richiano, S., Montes, A., Pappalardo, M., Aguirre, M.L., 2021. Last interglacial (MIS 5e) sea-level proxies in southeastern South America. Earth System Science Data 13, 171197.CrossRefGoogle Scholar
Guérin, G., Mercier, N., Adamiec, G., 2011. Dose-rate conversion factors: update. Ancient TL 29, 58.Google Scholar
Gzam, M., El Medjoub, N., Jedoui, Y., 2016. Late quaternary sea level changes of Gabes coastal plain and shelf: identification of the MIS 5c and MIS 5a onshore highstands, southern Mediterranean. Journal of Earth System Science 125, 1328.CrossRefGoogle Scholar
Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-Delmonte, V., Russell, G., et al., 2016. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2°C global warming could be dangerous. Atmospheric Chemistry and Physics 16, 37613812.CrossRefGoogle Scholar
Harmon, R.S., Mitterer, R.M., Kriausakul, N., Land, L.S., Schwarcz, H.P., Garrett, P., Larson, G.J., Vacher, H.L., Rowe, M., 1983. U-series and amino-acid racemization geochronology of Bermuda: implications for eustatic sea-level fluctuation over the past 250,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 44, 4170.CrossRefGoogle Scholar
Hearty, P.J., 2002. Revision of the late Pleistocene stratigraphy of Bermuda. Sedimentary Geology 153, 121.CrossRefGoogle Scholar
Hearty, P.J., Hollin, J.T., Neumann, A.C., O'Leary, M.J., McCulloch, M., 2007. Global sea-level fluctuations during the last interglacial (MIS 5e). Quaternary Science Reviews 26, 20902112.CrossRefGoogle Scholar
Hearty, P.J., Kindler, P., 1995. Sea-level highstand chronology from stable carbonate platforms (Bermuda and The Bahamas). Journal of Coastal Research 11, 675689.Google Scholar
Hearty, P.J., Neumann, A.C., 2001. Rapid sea level and climate change at the close of the Last Interglaciation (MIS 5e): evidence from the Bahama Islands. Quaternary Science Reviews 20, 18811895.CrossRefGoogle Scholar
Hearty, P.J., Tormey, B.R., 2017. Sea-level change and superstorms; geologic evidence from the last interglacial (MIS 5e) in the Bahamas and Bermuda offers ominous prospects for a warming Earth. Marine Geology 390, 347365.CrossRefGoogle Scholar
Hesp, P.A., Dillenburg, S.R., Barboza, E.G., Clerot, L.C.P., Tomazelli, L.J., Ayup-Zouain, R.N., 2007. Morphology of the Itapeva to Tramandai transgressive dunefield barrier system and mid- to late Holocene sea level change. Earth Surface Processes and Landforms 32, 407414.CrossRefGoogle Scholar
Hu, G., Zhang, J.-F., Qiu, W.-L., Zhou, L.-P., 2010. Residual OSL signals in modern fluvial sediments from the Yellow River (Huang He) and the implications for dating young sediments. Quaternary Geochronology 5, 187193.CrossRefGoogle Scholar
Kahn, J.M., Roberts, H.H., 1982. Variations in storm response along a microtidal transgressive barrier-island arc. Sedimentary Geology 33, 129146.CrossRefGoogle Scholar
Kopp, R.E., Simons, F.J., Mitrovica, J.X., Maloof, A.C., Oppenheimer, M., 2009. Probabilistic assessment of sea level during the last interglacial stage. Nature 462, 863867.CrossRefGoogle ScholarPubMed
Kraft, J.C., 1971. Sedimentary facies patterns and geologic history of a Holocene marine transgression. GSA Bulletin 82, 21312158.CrossRefGoogle Scholar
Kraft, J.C., John, C.J., 1979. Lateral and vertical facies relations of transgressive barrier. AAPG Bulletin 63, 21452163.Google Scholar
Kukla, G.J., Bender, M.L., de Beaulieu, J.-L., Bond, G., Broecker, W.S., Cleveringa, P., Gavin, J.E., et al., 2002. Last interglacial climates. Quaternary Research 58, 213.CrossRefGoogle Scholar
Lambeck, K., Esat, T.M., Potter, E.-K., 2002. Links between climate and sea levels for the past three million years. Nature 419, 199206.CrossRefGoogle ScholarPubMed
Lambeck, K., Nakada, M., 1992. Constraints on the age and duration of the last interglacial period and on sea-level variations. Nature 357, 125128CrossRefGoogle Scholar
Lambeck, K., Purcell, A., Dutton, A., 2012. The anatomy of interglacial sea levels: the relationship between sea levels and ice volumes during the Last Interglacial. Earth and Planetary Science Letters 315–316, 411.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, 261285.CrossRefGoogle Scholar
Leandro, C.G., Barboza, E.G., Caron, F., Jesus, F.A.N., 2019. GPR trace analysis for coastal depositional environments of southern Brazil. Journal of Applied Geophysics 162, 112.CrossRefGoogle Scholar
Leatherman, S.P., 1979. Migration of Assateague Island, Maryland, by inlet and overwash processes. Geology 7, 104107.2.0.CO;2>CrossRefGoogle Scholar
Leatherman, S.P., 1983. Barrier dynamics and landward migration with Holocene sea-level rise. Nature 301, 435437.CrossRefGoogle Scholar
Lima, L.G., Dillenburg, S.R., Medeanic, S., Barboza, E.G., Rosa, M.L.C.C., Tomazelli, L.J., Dehnhardt, B.A., Caron, F., 2013. Sea-level rise and sediment budget controlling the evolution of a transgressive barrier in southern Brazil. Journal of South American Earth Sciences 42, 2738.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.Google Scholar
Lopes, R.P., Buchmann, F.S.C., 2008. Comparação tafonômica entre duas concentrações fossilíferas (shell beds) da Planície Costeira do Rio Grande do Sul, Brasil. Gaea 4, 6577.CrossRefGoogle Scholar
Lopes, R.P., Dillenburg, S.R., Schultz, C.L., 2016. Cordão Formation: loess deposits in the southern coastal plain of the state of Rio Grande do Sul, Brazil. Anais da Academia Brasileira de Ciências 88, 21432166.CrossRefGoogle Scholar
Lopes, R.P., Dillenburg, S.R., Schultz, C.L., Ferigolo, J., Ribeiro, A.M., Pereira, J.C., Holanda, E.C., Pitana, V.G., Kerber, L., 2014a. The sea-level highstand correlated to marine isotope stage (MIS) 7 in the coastal plain of the state of Rio Grande do Sul, Brazil. Anais da Academia Brasileira de Ciências 86, 15731595.CrossRefGoogle Scholar
Lopes, R.P., Kinoshita, O.A., Baffa, O., Figueiredo, A.M.G., Dillenburg, S.R., Schultz, C.L., Pereira, J.C., 2014b. ESR dating of Pleistocene mammals and marine shells from the coastal plain of Rio Grande do Sul state, southern Brazil. Quaternary International 352, 124134.CrossRefGoogle Scholar
Lopes, R.P., Pereira, J.C., 2018. Molluskan grazing traces (ichnogenus Radulichnus Voigt, 1977) on a Pleistocene bivalve from southern Brazil, with the proposal of a new ichnospecies. Ichnos 26, 141157.CrossRefGoogle Scholar
Lopes, R.P., Pereira, J.C., Kinoshita, A., Mollemberg, M., Barbosa, F. Jr., Baffa, O., 2020. Geological and taphonomic significance of electron spin resonance (ESR) ages of Middle-Late Pleistocene marine shells from barrier-lagoon systems of Southern Brazil. Journal of South American Earth Sciences 101, 102605.CrossRefGoogle Scholar
Lopes, R.P., Ritter, M.N., Barboza, E.G., Rosa, M.L.C.C., Dillenburg, S.R., Caron, F., 2022. The influence of coastal evolution on the paleobiogeography of the bivalve Anomalocardia flexuosa (Linné, 1767) along the southwestern Atlantic Ocean. Journal of South American Earth Sciences 113, 103662.CrossRefGoogle Scholar
Lopes, R.P., Souza, M.S., Pereira, J.C., Raupp, S.V., Tatumi, S.H., Yee, M., Dillenburg, S.R., 2021. Late Pleistocene-Holocene diatomites from the coastal plain of southern Brazil: paleoenvironmental implications. Quaternary International 598, 3855.CrossRefGoogle Scholar
Ludwig, K.R., Muhs, D.R., Simmons, K.R., Halley, R.B., Shinn, E.A., 1996. Sea-level records at ~80 ka from tectonically stable platforms: Florida and Bermuda. Geology 24, 211214.2.3.CO;2>CrossRefGoogle Scholar
Machado, G.M.V., Bastos, A.C., Albino, J., Zamprogno, G.C., 2020. Late Quaternary evolution model for a coastal embayment with low sediment input and bedrock control (southeast Brazil). Estuarine Coastal and Shelf Science 243, 112.Google Scholar
Martin, L., Bittencourt, A.C.S.P., Vilas-Boas, G.S., 1982. Primeira ocorrência de corais pleistocênicos da costa brasileira: datação do máximo da penúltima transgressão. Ciências da Terra 3, 1617.Google Scholar
Martin, L., Dominguez, J.M.L., Bittencourt, A.C.S.P., 2003. Fluctuating sea levels in eastern and southeastern Brazil: evidence from multiple fossil and geometric indicators. Journal of Coastal Research 19, 101124.Google Scholar
Martins, L.R., Coutinho, P.N., 1981. The Brazilian continental margin. Earth-Science Reviews 17, 87107.CrossRefGoogle Scholar
Matias, A., Ferreira, Ó., Vila-Concejo, A., Morris, B., Dias, J.A., 2010. Short-term morphodynamics of non-storm overwash. Marine Geology 274, 6984.CrossRefGoogle Scholar
Mendes, V.R., Giannini, P.C.F., Guedes, C.C.F., DeWitt, R., Andrade, H.A.A., 2015. Central Santa Catarina coastal dunefields chronology and their relation to relative sea level and climatic changes. Brazilian Journal of Geology 45 (Suppl 1), 7995.CrossRefGoogle Scholar
Mesolella, K.J., Matthews, R.K., Broecker, W.S., Thurber, D.L., 1969. The astronomical theory of climatic change: Barbados data. Journal of Geology 77, 250274.CrossRefGoogle Scholar
Miot da Silva, G., Hesp, P., Keim, B., Martinho, C.T., Ferligoj, Y., 2013. Changes in dunefield geomorphology and vegetation cover as a response to local and regional climate variations. Special issue, Journal of Coastal Research 65, 17.Google Scholar
Moore, L.J, Murray, A.B., 2018. Barrier Dynamics and Response to Changing Climate. Springer International, Cham, Switzerland.CrossRefGoogle Scholar
Morton, R.A., 1994. Texas barriers. In: Davis, R.A. Jr. (Ed.), Geology of the Holocene Barrier Island Systems. Springer-Verlag, Berlin, pp. 75114.CrossRefGoogle Scholar
Morton, R.A., Gonzalez, J.L., Lopez, G.I., Correa, I.D., 2000. Frequent non-storm washover of barrier islands, Pacific coast of Colombia. Journal of Coastal Research 16, 8287.Google Scholar
Muhs, D.R., 2002. Evidence for the timing and duration of the last interglacial period from high-precision uranium-series ages of corals on tectonically stable coastlines. Quaternary Research 58, 3640.CrossRefGoogle Scholar
Muhs, D.R., Simmons, K.R., Schumann, R.R., Halley, R.B., 2011. Sea-level history of the past two interglacial periods: new evidence from U-series dating of reef corals from south Florida. Quaternary Science Reviews 30, 570590.CrossRefGoogle Scholar
Muhs, D.R., Simmons, K.R., Steinke, B., 2002. Timing and warmth of the Last Interglacial period: new U-series evidence from Hawaii and Bermuda and a new fossil compilation for North America. Quaternary Science Reviews 21, 13551383.CrossRefGoogle Scholar
Muhs, D.R., Wehmiller, J.F., Simmons, K.R., York, L.L., 2003. Quaternary sea-level history of the United States. In: Gillespie, A.R., Porter, S.C., Atwater, B.F. (Eds.), The Quaternary Period in the United States. Development in Quaternary Science 1. Elsevier, Amsterdam, pp. 147183.CrossRefGoogle Scholar
Murray-Wallace, C.V., Brooke, B.P., Cann, J.H., Belpeio, A.P., Bourman, R.P., 2001. Whole-rock aminostratigraphy of the Coorong Coastal Plain, South Australia: towards a 1 million year record of sea-level highstands. Journal of the Geological Society 158, 111124.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements, 32, 5773.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.CrossRefGoogle Scholar
Nascimento, R.A., Shimizu, M.H., Venencio, I.M., Chiessi, H., Kuhnert, H., Johnstone, H., Govin, A., et al., 2022. Warmer western tropical South Atlantic during the Last Interglacial relative to the current interglacial period. Global and Planetary Change 215, 103889.CrossRefGoogle Scholar
Neal, A., 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Science Reviews 66, 261330.CrossRefGoogle Scholar
Neal, J.E., Abreu, V., Bohacs, K.M., Feldman, H.R., Pederson, K.H., 2016. Accommodation succession (δA/δS) sequence stratigraphy: observational method, utility and insights into sequence boundary formation. Journal of the Geological Society 173, 803816.CrossRefGoogle Scholar
Oertel, G.F., 1985. The barrier island system. Marine Geology 63, 118.CrossRefGoogle Scholar
Otvos, E.G., 2015. The Last Interglacial Stage: definitions and marine highstand, North America and Eurasia. Quaternary International 383, 158173.CrossRefGoogle Scholar
Parham, P.R., Riggs, S.R., Culver, S.J., Mallinson, D.J., Wehmiller, J.F., 2007. Quaternary depositional patterns and sea-level fluctuations, northeastern North Carolina. Quaternary Research 67, 8399.CrossRefGoogle Scholar
Payton, C.E., 1977. Seismic Stratigraphy—Applications to Hydrocarbon Exploration. AAPG Memoir 26. https://doi.org/10.1306/M26490.CrossRefGoogle Scholar
Peng, J., Dong, Z.B., Han, F.Q., Long, H., Liu, X.J., 2013. R package numOSL: numeric routines for optically stimulated luminescence dating. Ancient TL 31, 4148.Google Scholar
Porat, N., Botha, G., 2008. The luminescence chronology of dune development on the Maputaland coastal plain, southeast Africa. Quaternary Science Reviews 27, 10241046.CrossRefGoogle Scholar
Posamentier, H.W., James, D.P., 1993. An overview of sequence-stratigraphic concepts: uses and abuses. In: Posamentier, H.W. (Ed.), Sequence Stratigraphy and Facies Associations. International Association of Sedimentologists, Special Publication 18, 318.CrossRefGoogle Scholar
Potter, E.-K., Esat, T.M., Schellmann, G., Radtke, U., Lambeck, K., McCulloch, M.T., 2004. Suborbital-period sea-level oscillations during marine isotope substages 5a and 5c. Earth and Planetary Science Letters 225, 191204.CrossRefGoogle Scholar
Potter, E.-K., Lambeck, K., 2003. Reconciliation of sea-level observations in the Western North Atlantic during the last glacial cycle. Earth and Planetary Science Letters 217, 171181.CrossRefGoogle Scholar
Poupeau, G., Soliani, E. Jr., Rivera, A., Loss, E.L., Vasconcellos, M.B.A., 1988. Datação por termoluminescência de alguns depósitos arenosos costeiros do último ciclo climático, no nordeste do Rio Grande do Sul. Pesquisas 21, 2547.Google Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR Dating: large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Radtke, U., Schellmann, G., 2005. Timing and magnitude of sea level change during MIS 5 derived from Barbados coral reef terraces: a critical literature review and new data. Special issue, Journal of Coastal Research 42, 5262.Google Scholar
Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G., Taucanne, S., 2015. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews 111, 94106.CrossRefGoogle Scholar
Ramsay, P.J., Cooper, J.A.G., 2002. Late Quaternary sea-level change in South Africa. Quaternary Research 57, 8290.CrossRefGoogle Scholar
Reading, H.G., Collinson, J.D., 1996. Clastic Coasts. In: Reading, H.G. (Ed.), Sedimentary Environments: Processes, Facies and Stratigraphy. 3rd ed. Blackwell, Malden, MA, pp. 154231.Google Scholar
Reinson, G.E., 1979. Facies models 14. Barrier island systems. Geoscience Canada 6(2): 5168.Google Scholar
Rocha, M.X., Rosa, M.L.C.C., 2021. Variabilidade morfodinâmica de deltas lagunares holocênicos do litoral norte do Rio Grande do Sul. Revista Brasileira de Geomorfologia 22, 407439.CrossRefGoogle Scholar
Rodriguez, A.B., Theuerkauf, E.J., Ridge, J.T., VanDusen, B.M., Fegley, S.R., 2020. Long-term washover fan accretion on a transgressive barrier island challenges the assumption that paleotempestites represent individual tropical cyclones. Scientific Reports 10, 19755.CrossRefGoogle ScholarPubMed
Rohling, E.J., Grant, K., Hembleen, C.H., Siddall, M., Hoogakker, B.A.A., Bolshaw, M., Kucera, M., 2008. High rates of sea-level rise during the last interglacial period. Nature Geosciences 1, 3842.CrossRefGoogle Scholar
Rojas, A., Martínez, S., 2016. Marine Isotope Stage 3 (MIS 3) versus Marine Isotope Stage 5 (MIS 5) fossiliferous marine deposits from Uruguay. In: Gasparini, G.M., Rabassa, J., Deschamps, C., Tonni, E.P. (Eds.), Marine Isotope Stage 3 in Southern South America, 60 Ka B.P.–30 Ka B.P. Springer Earth System Sciences. Springer, Cham, Switzerland, pp. 249278.CrossRefGoogle Scholar
Rosa, M.L.C.C., 2012. Geomorfologia, estratigrafia de sequências e potencial de preservação dos sistemas Laguna Barreira do Quaternário Costeiro do Rio Grande do Sul. PhD thesis, Programa de Pós-graduação em Geociências, Universidade Federal do Rio Grande do Sul. http://hdl.handle.net/10183/66367.Google Scholar
Rosa, M.L.C.C., Barboza, E.G., Abreu, V.S., Tomazelli, L.J., Dillenburg, S.R., 2017. High frequency sequences in the Quaternary of Pelotas Basin (coastal plain): a record of degradational stacking as a function of longer-term base-level fall. Brazilian Journal of Geology 47, 183207.CrossRefGoogle Scholar
Rosa, M.L.C.C., Barboza, E.G., Dillenburg, S.R., Tomazelli, L.J., Ayup-Zouain, R.N., 2011. The Rio Grande do Sul (southern Brazil) shoreline behavior during the Quaternary: a cyclostratigraphic analysis. Special issue, Journal of Coastal Research 64, 686690.Google Scholar
Rosa, M.L.C.C., Hoyal, D.C., Barboza, E.G., Fedele, J., Abreu, V.S., 2016. River-dominated deltas: upscaling autogenic and allogenic processes observed in laboratory experiments to field examples of small deltas in southern Brazil. In: Budd, D.A., Hajek, E.A., Purkis, S.J. (Eds.), Autogenic Dynamics and Self-Organization in Sedimentary Systems. SEPM Special Publication 106, 176197.Google Scholar
Rossello, E.A., de Santa Ana, H., Veroslavsky, G., 2000. El Lineamento Santa Lucía-Aiguá-Merín: un corredor tectónico extensivo y transcurrente dextral precursor de la apertura atlántica. Revista Brasileira de Geocièncias 30, 749756.CrossRefGoogle Scholar
Rovere, A., Casella, E., Harris, D.L., Lorscheid, T., Nandasena, N.A.K., Dyer, B., Sandstrom, M.R., et al., 2017. Giant boulders and Last Interglacial storm intensity in the North Atlantic. Proceedings of the National Academy of Sciences USA 114, 1214412149.CrossRefGoogle ScholarPubMed
Roy, P.S., Cowell, P.J., Ferland, M.A., Thom, B.G., 1997. Wave-dominated coasts. In: Carter, R.G.W., Woodroffe, C.D. (Eds.), Coastal Evolution—Late Quaternary Shoreline Morphodynamics. Cambridge University Press, Edinburgh, pp. 121186.Google Scholar
Schellmann, G., Radtke, U., Potter, E.-K., Esat, T.M., McCulloch, M.T., 2004. Comparison of ESR and TIMS U/Th dating of Marine Isotope Stage (MIS) 5e, 5c, and 5a from Barbados— implications for paleo sea-level changes in the Caribbean. Quaternary International 120, 4150.CrossRefGoogle Scholar
Schwartz, R.K., 1982. Bedform and stratification characteristics of some modern small-scale washover sand bodies. Sedimentology 29, 835849.CrossRefGoogle Scholar
Sechi, D., Andreucci, S., Pascucci, V., 2013. High energy beaches system developing during MIS 5c high sea-stand (100 ka), north-west Sardinia, Italy. Special issue, Journal of Mediterranean Earth Sciences 2013, 133136.Google Scholar
Sedgwick, P.E., Davis, R.A. Jr., 2003. Stratigraphy of washover deposits in Florida: implications for recognition in the stratigraphic record. Marine Geology 200, 3148.CrossRefGoogle Scholar
Shackleton, N.J., 1969. The last interglacial in the marine and terrestrial records. Proceedings of the Royal Society of London B 174, 135154.Google Scholar
Shackleton, N.J., Chapman, M., Sánchez-Goñi, M.S., Pailler, D., Lancelot, Y., 2002. The classic marine isotope substage 5e. Quaternary Research 58, 1416.CrossRefGoogle Scholar
Shackleton, N.J., Opdyke, N.D., 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year Scale. Quaternary Research 3, 3955.CrossRefGoogle Scholar
Shackleton, N.J., Sánchez-Goñi, M.F., Pailler, D., Lancelot, Y., 2003. Marine Isotope Substage 5e and the Eemian Interglacial. Global and Planetary Change 36, 151155.CrossRefGoogle Scholar
Sherman, C.E., Fletcher, C.H., Rubin, K.H., Simmons, K.R., Adey, W.H., 2014. Sea-level and reef accretion history of Marine Oxygen Isotope Stage 7 and late Stage 5 based on age and facies of submerged late Pleistocene reefs, Oahu, Hawaii. Quaternary Research 81, 138150.CrossRefGoogle Scholar
Siddall, M., Chappell, J., Potter, E.-K., 2007. Eustatic sea level during past interglacials. In: Sirocko, F., Claussen, M., Sánchez Goñi, M.F., Litt, T. (Eds.), The Climate of Past Interglacials. Developments in Quaternary Science 7. Elsevier, Amsterdam, pp. 8192.Google Scholar
Siddall, M., Rohling, E.J., Almogi-Labin, A., Hemleben, C., Meischner, D., Schmeizer, L., Smeed, D.A., 2003. Sea-level fluctuations during the last glacial cycle. Nature 423, 853858.CrossRefGoogle ScholarPubMed
Silva, M.A.M., 1979. Provenance of heavy minerals in beach sands, southeastern Brazil: from Rio Grande to Chui (Rio Grande do Sul State). Sedimentary Geology 24, 133148.CrossRefGoogle Scholar
Simms, A.R., DeWitt, R., Rodriguez, A.B., Lambeck, K., Anderson, J.B., 2009. Revisiting marine isotope stage 3 and 5a (MIS3-5a) sea levels within the northwestern Gulf of Mexico. Global and Planetary Change 66, 100111.CrossRefGoogle Scholar
Singarayer, J.S., Bailey, R.M., Ward, S., Stokes, S., 2005. Assessing the completeness of optical resetting of quartz OSL in the natural environment. Radiation Measurements 40, 1325.CrossRefGoogle Scholar
Spratt, R.M., Lisiecki, L.E., 2016. A Late Pleistocene sea level stack. Climate of the Past 12, 10791092.CrossRefGoogle Scholar
Stirling, C.H., Esat, T.M., Lambeck, K., McCulloch, M.T., 1998. Timing and duration of the Last Interglacial: evidence for a restricted interval of widespread coral reef growth. Earth and Planetary Science Letters 160, 745762.CrossRefGoogle Scholar
Suguio, K., Bezerra, F.H.R., Barreto, A.M.F., 2011. Luminescence dated Late Pleistocene wave-built terraces in northeastern Brazil. Anais da Academia Brasileira de Ciências 83, 907920.CrossRefGoogle Scholar
Suguio, K., Martin, L., 1978. Quaternary marine formations of the States of São Paulo and southern Rio de Janeiro. In: I International Symposium on Coastal Evolution in the Quaternary, University of São Paulo, São Paulo, 1978, pp. 155. Special Publication 1.Google Scholar
Suguio, K., Martin, L., Bittencourt, A.C.S.P., Dominguez, J.M.L., Flexor, J.-M., Azevedo, A.E.G., 1985. Flutuações do nível relativo do mar durante o Quaternário superior ao longo do litoral brasileiro e suas implicações na sedimentação costeira. Revista Brasileira de Geocíências 15, 273286.CrossRefGoogle Scholar
Suguio, K., Tatumi, S.H., Kowata, E.A., Munita, C.S., Paiva, R.P., 2003. Upper Pleistocene deposits of the Comprida Island (São Paulo State) dated by thermoluminescence method. Anais da Academia Brasileira de Ciências 75, 9196.CrossRefGoogle Scholar
Sweet, W.V., Kopp, R.E., Weaver, C.P., Obeysekera, J., Horton, R.M., Thieler, E.R., Zervas, C., 2017. Global and Regional Sea Level Rise Scenarios for the United States. NOAA Technical Report NOS CO-OPS 083.Google Scholar
Swift, D.J.P., 1968. Coastal erosion and transgressive stratigraphy. Journal of Geology 76, 444456.CrossRefGoogle Scholar
Swift, D.J.P., 1975. Barrier-island genesis: evidence from the central Atlantic shelf, eastern USA. Sedimentary Geology 14, 143.CrossRefGoogle Scholar
Szabo, B.J., 1985. Uranium-series dating of fossil corals from marine sediments. GSA Bulletin 96, 398406.2.0.CO;2>CrossRefGoogle Scholar
Tamura, T., Kodama, Y., Bateman, M.D., Saitoh, Y., Watanabe, K., Matsumoto, D., Yamaguchi, N., 2011. Coastal barrier dune construction during sea-level highstands in MIS 3 and 5a on Tottori coast-line, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 308, 492501.CrossRefGoogle Scholar
Thom, B.G., 1983. Transgressive and regressive stratigraphies of coastal sand barriers in southeast Australia. Marine Geology 56, 137158.CrossRefGoogle Scholar
Thompson, W.G., Goldstein, S.L., 2005. Open-system coral ages reveal persistent suborbital sea-level. Science 308, 401404.CrossRefGoogle ScholarPubMed
Tomazelli, L.J., Dillenburg, S.R., 2007. Sedimentary facies and stratigraphy of a last interglacial coastal barrier in south Brazil. Marine Geology 244, 3345.CrossRefGoogle Scholar
Tomazelli, L.J., Villwock, J.A., 2005. Mapeamento geológico de planícies costeiras: o exemplo da costa do Rio Grande do Sul. Gravel 3, 109115.Google Scholar
Tomazelli, L.J., Villwock, J.A., Dillenburg, S.R., Bachi, F.A., Dehnhardt, B.A., 1998. Significance of present-day coastal erosion and marine transgression, Rio Grande do Sul, southern Brazil. Anais da Academia Brasileira de Ciências 70, 221229.Google Scholar
Travessas, F.A., Dillenburg, S.R., Clerot, L.C.P., 2005. Estratigrafia e evolução da barreira holocênica do Rio Grande do Sul no trecho Tramandaí-Cidreira. Boletim Paranaense de Geocièncias 53, 5773.Google Scholar
Ubilla, M., Martínez, S., 2016. Geology and Paleontology of the Quaternary of Uruguay. SpringerBriefs in Earth System Sciences. Springer, Cham, Switzerland.CrossRefGoogle Scholar
Villwock, J.A., Tomazelli, L.J., 1995. Geologia Costeira do Rio Grande do Sul. Notas Técnicas 8, 145.Google Scholar
Villwock, J.A., Tomazelli, L.J., Loss, E.L., Dehnhardt, E.A., Horn, N.O., Bachi, F.A., Dehnhardt, B.A., 1986. Geology of the Rio Grande do Sul Coastal Province. In: Rabassa, J. (Ed.), Quaternary of the South America and Antarctic Peninsula. Vol. 4. A.A. Balkema, Rotterdam, pp. 7997.Google Scholar
Wainer, K.A.I., Rowe, M.P., Thomas, A.L., Mason, A.J., Williams, B., Tamisiea, M.E., Williams, F.H., Düsterhaus, A., Henderson, G.M., 2017. Speleothem evidence for MIS 5c and 5a sea level above modern level at Bermuda. Earth and Planetary Science Letters 457, 325334.CrossRefGoogle Scholar
Walker, R.G., 1992. Facies, Facies Models and Modern Stratigraphic Concepts. In: Walker, R.G., James, N.P. (Eds.), Facies Models—Response to Sea Level Change. Geological Association of Canada, St. John's, NL, pp. 114.Google Scholar
Wallinga, J., 2002a. On the detection of OSL age overestimation using single-aliquot techniques. Geochronometria 21, 1726.Google Scholar
Wallinga, J., 2002b. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31, 303322.CrossRefGoogle Scholar
Watanabe, E.A., Tatumi, S.H., Suguio, K., Munita, C.S., Paiva, R.P., 2003. Luminescence dating of dunes From São Paulo state, Brazil and the Pleistocene relative sea-levels. Special issue, Journal of Coastal Research 35, 264292.Google Scholar
Wenmiller, J.F., Simmons, K.R., Cheng, H., Edwards, R.L., Martin-McNaughton, J., York, L.L., Krantz, D.E., Shen, C.-C., 2004. Uranium-series coral ages from the US Atlantic Coastal Plain—the “80 ka problem” revisited. Quaternary International 120, 314.CrossRefGoogle Scholar
Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30, 377392.CrossRefGoogle Scholar
Wintle, A.G., Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements 41, 369391.CrossRefGoogle Scholar
Supplementary material: File

Lopes et al. supplementary material 1
Download undefined(File)
File 33.8 KB
Supplementary material: File

Lopes et al. supplementary material 2
Download undefined(File)
File 39.4 KB