Hostname: page-component-7f64f4797f-g5lq8 Total loading time: 0.001 Render date: 2025-11-10T12:32:22.483Z Has data issue: false hasContentIssue false

Uncovering an eruptive history using new tephra data from Argentine lacustrine cores linked to Chilean volcanoes in the southern segment of the Southern Volcanic Zone

Published online by Cambridge University Press:  06 November 2025

Walter Alexis Alfonzo*
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche-Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina Centro Científico Tecnológico CONICET Patagonia Norte, San Carlos de Bariloche, Argentina
Romina Daga
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche-Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina Centro Científico Tecnológico CONICET Patagonia Norte, San Carlos de Bariloche, Argentina
Natalia Piotrowska
Affiliation:
Institute of Physics, Silesian University of Technology, Gliwice, Poland
Gastón Goldmann
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche-Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina
Sergio Ribeiro Guevara
Affiliation:
Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche-Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina
*
Corresponding author: Walter Alexis Alfonzo; Email: tatoo.alfonzo@gmail.com

Abstract

This study examines tephra layers from lacustrine sediment cores collected in Patagonian Andean Range, correlating them with volcanic sources from the southern segment of the Southern Volcanic Zone (SVZ). Ten distinct tephra layers, spanning approximately the last 2000 yr, were identified across four cores from Lakes Rivadavia, La Zeta, Brychan, and Theobald, from ∼42°S to 44°S. Mostly geochemical and mineralogical analyses of tephra components (pumice, glass shards, scoria) reveal that the Chaitén, Michinmahuida, and Huequi volcanoes are the main sources of tephra in the region. Identified eruptions include four from Chaitén (ca. 2008 CE, ca. twelfth, ca. eighth, and fourth to fifth centuries), two from Huequi (beginning of the nineteenth and, possibly, fourteenth centuries), and four from Michinmahuida (ca. seventeenth to eighteenth, thirteenth, eighth, and ca. second centuries). Four of these tephra layers also have potential as isochronous marker beds in the region, allowing a preliminary reconstruction of their regional dispersal patterns. Some tephras may represent previously undocumented or scarcely documented eruptions. These findings suggest that the eruptive frequency in the southern SVZ has been underestimated, emphasizing the need for further research to expand the eruptive history and more accurately assess the volcanic hazards associated with this region.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Quaternary Research Center.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alfano, F., Bonadonna, C., Volentik, A.C., Connor, C.B., Watt, S.F., Pyle, D.M., Connor, L.J., 2011. Tephra stratigraphy and eruptive volume of the May, 2008, Chaitén eruption, Chile. Bulletin of Volcanology 73, 613630.10.1007/s00445-010-0428-xCrossRefGoogle Scholar
Alfonzo, W.A., Daga, R., Demichelis, A., Goldmann, G., Guevara, S.R., 2025. Textural complexity and geochemistry of the last millennium pyroclastic deposits from Puyehue-Cordón Caulle volcanic complex: implications for tephrochronological and volcanological interpretations. Volcanica 8, 111134.10.30909/vol.08.01.111134CrossRefGoogle Scholar
Alloway, B.V., Pearce, N.J., Moreno, P.I., Villarosa, G., Jara, I., De Pol-Holz, R., Outes, V., 2017. An 18,000 year-long eruptive record from Volcán Chaitén, northwestern Patagonia: paleoenvironmental and hazard-assessment implications. Quaternary Science Reviews 168, 151181.10.1016/j.quascirev.2017.05.011CrossRefGoogle Scholar
Alloway, B.V., Pearce, N.J., Moreno, P.I., Villarosa, G., Jara, I.A., Henríquez, C.A., …Outes, V., 2022. Refinement of the tephrostratigraphy straddling the northern Patagonian Andes (40–41° S): new tephra markers, reconciling different archives and ascertaining the timing of piedmont deglaciation. Journal of Quaternary Science 37, 441477.10.1002/jqs.3389CrossRefGoogle Scholar
Amigo, Á., Lara, L.E., Smith, V.C., 2013. Holocene record of large explosive eruptions from Chaitén and Michinmahuida Volcanoes, Chile. Andean Geology 40, 227248.10.5027/andgeoV40n2-a03CrossRefGoogle Scholar
Araqué, A.K., 2015. Análisis del plan de manejo de la Reserva Natural Urbana Laguna La Zeta (Esquel–provincia del Chubut) bajo la visión de la gestión integrada de los recursos hídricos. Master’s thesis, Universidad Nacional del Litoral, Santa Fe, Argentina. http://hdl.handle.net/11185/827.Google Scholar
Baigún, C., Mugni, H., Bonetto, C., 2006. Nutrient concentrations and trophic state of small Patagonian Andean lakes. Journal of Freshwater Ecology 21, 449456.10.1080/02705060.2006.9665022CrossRefGoogle Scholar
Bronk Ramsey, C., 2008. Radiocarbon dating: revolutions in understanding. Archaeometry 50, 249275.10.1111/j.1475-4754.2008.00394.xCrossRefGoogle Scholar
Bronk Ramsey, C., 2021. OxCal v.4.4.4. https://c14.arch.ox.ac.uk/oxcal.html.Google Scholar
Carabelli, F., Scoz, R., Claverie, H., Jaramillo, M., Gómez, M., 2006. Changes on landscape heterogeneity and spatial patterning of native forests in Patagonia, Argentina. Forest Systems 15, 160170.10.5424/srf/2006152-00961CrossRefGoogle Scholar
Carn, S.A., Pallister, J.S., Lara, L., Ewert, J.W., Watt, S., Prata, A.J., Thomas, R.J., et al. 2009. The unexpected awakening of Chaitén volcano, Chile. Eos, Transactions American Geophysical Union 90(24), 205206.10.1029/2009EO240001CrossRefGoogle Scholar
Daga, R., Guevara, S.R., Arribére, M., 2016. New records of late Holocene tephras from Lake Futalaufquen (42.8 S), northern Patagonia. Journal of South American Earth Sciences 66, 232247.10.1016/j.jsames.2015.12.003CrossRefGoogle Scholar
Davies, S.M., Albert, P.G., Bourne, A.J., Owen, S., Svensson, A., Bolton, M.S., Cook, E., et al. 2024. Exploiting the Greenland volcanic ash repository to date caldera-forming eruptions and widespread isochrons during the Holocene. Quaternary Science Reviews 334, .10.1016/j.quascirev.2024.108707CrossRefGoogle Scholar
Deligne, N.I., Coles, S.G., Sparks, R.S.J., 2010. Recurrence rates of large explosive volcanic eruptions. Journal of Geophysical Research: Solid Earth 115(B6). https://doi.org/10.1029/2009JB006554.CrossRefGoogle Scholar
Donovan, A., Toyos, G., Amigo, A., Villarosa, G., Lanfranco, G.O., Rovere, E., 2023. Managing cross-border eruptions: insights from recent crises in Chile and Argentina. Journal of Volcanology and Geothermal Research 435, .10.1016/j.jvolgeores.2023.107774CrossRefGoogle Scholar
Dugmore, A.J., Thompson, P.I., Streeter, R.T., Cutler, N.A., Newton, A.J., Kirkbride, M.P., 2020. The interpretative value of transformed tephra sequences. Journal of Quaternary Science 35(1–2), 2338.10.1002/jqs.3174CrossRefGoogle Scholar
Fisher, R.V., Schmincke, H.U., 1984. Pyroclastic rocks and tectonic environment. In: Pyroclastic Rocks. Springer, Berlin, pp. 383409.10.1007/978-3-642-74864-6_14CrossRefGoogle Scholar
Fontijn, K., Lachowycz, S.M., Rawson, H., Pyle, D.M., Mather, T.A., Naranjo, J.A., Moreno-Roa, H., 2014. Late Quaternary tephrostratigraphy of southern Chile and Argentina. Quaternary Science Reviews 89, 7084.10.1016/j.quascirev.2014.02.007CrossRefGoogle Scholar
Fontijn, K., Rawson, H., Van Daele, M., Moernaut, J., Abarzúa, A.M., Heirman, K., Bertrand, S., et al. 2016. Synchronisation of sedimentary records using tephra: a postglacial tephrochronological model for the Chilean Lake District. Quaternary Science Reviews 137, 234254.10.1016/j.quascirev.2016.02.015CrossRefGoogle Scholar
Furci, H., Arribére, M., Guevara, S.R., 2013. Self-shielding corrections in cylindrical samples in gamma spectrometry with germanium well-type detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 705, 132139.10.1016/j.nima.2012.12.085CrossRefGoogle Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., Marengo, J., 2009. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281, 180195.10.1016/j.palaeo.2007.10.032CrossRefGoogle Scholar
Geoffroy, C.A., Alloway, B.V., Amigo, À., Parada, M.A., Gutierrez, F., Castruccio, A., Pearce, N.J.G., et al. 2018. A widespread compositionally bimodal tephra sourced from Volcán Melimoyu (44° S, Northern Patagonian Andes): insights into magmatic reservoir processes and opportunities for regional correlation. Quaternary Science Reviews 200, 141159.10.1016/j.quascirev.2018.09.034CrossRefGoogle Scholar
Hogg, A.G., Heaton, T.J., Hua, Q., Palmer, J.G., Turney, C.S., Southon, J., Bayliss, A., et al. 2020. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759778.10.1017/RDC.2020.59CrossRefGoogle Scholar
Iglesias, V., Whitlock, C., Markgraf, V., Bianchi, M.M., 2014. Postglacial history of the Patagonian forest/steppe ecotone (41–43 S). Quaternary Science Reviews 94, 120135.10.1016/j.quascirev.2014.04.014CrossRefGoogle Scholar
Joshi, S.R., Shukla, B.S., 1991. Ab initio derivation of formulations for 210 Pb dating of sediments. Journal of Radioanalytical and Nuclear Chemistry 148, 7379.10.1007/BF02060548CrossRefGoogle Scholar
Kearney, R.J., Albert, P.G., Staff, R.A., Magyari, E.K., Pál, I., Veres, D., Lane, C.S., et al. 2024. At an important tephrostratigraphic crossroads: cryptotephra in Late Glacial to Early Holocene lake sediments from the Carpathian Mountains, Romania. Quaternary Science Reviews 330, .10.1016/j.quascirev.2024.108558CrossRefGoogle Scholar
Lara, L.E., 2009. La erupción 2008 del volcan Chaiten, Chile: informe preliminar. Andean Geology 36, 125129.Google Scholar
López-Escobar, L., Kilian, R., Kempton, P.D., Tagiri, M., 1993. Petrography and geochemistry of Quaternary rocks from the Southern Volcanic Zone of the Andes between 41 30’and 46 00’S, Chile. Andean Geology 20, 3355.Google Scholar
Lowe, D.J., 2011. Tephrochronology and its application: a review. Quaternary Geochronology 6, 107153.10.1016/j.quageo.2010.08.003CrossRefGoogle Scholar
Lowe, D.J., Pearce, N.J., Jorgensen, M.A., Kuehn, S.C., Tryon, C.A., Hayward, C.L., 2017. Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: review and evaluation. Quaternary Science Reviews 175, 144.10.1016/j.quascirev.2017.08.003CrossRefGoogle Scholar
Martin, R.S., Watt, S.F.L., Pyle, D.M., Mather, T.A., Matthews, N.E., Georg, R.B., Day, J.A., et al. 2009. Environmental effects of ashfall in Argentina from the 2008 Chaitén volcanic eruption. Journal of Volcanology and Geothermal Research 184(3–4), 462472.10.1016/j.jvolgeores.2009.04.010CrossRefGoogle Scholar
Martínez Peck, L., 1994. Desarrollo integral del complejo recreativo La Zeta. COPLADE, Esquel, Argentina. https://bibliotecavirtual.unl.edu.ar:8443/bitstream/handle/11185/827/Tesis.pdf?sequence=1&isAllowed=y.Google Scholar
McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chemical Geology 120, 223253.10.1016/0009-2541(94)00140-4CrossRefGoogle Scholar
McPhie, J., Doyle, M., Allen, R., 1993. Volcanic Textures: A Guide to the Interpretation of Textures in Volcanic Rocks. Centre for Ore Deposit and Exploration Studies, University of Tasmania, Hobart.Google Scholar
Modenutti, B., Queimaliños, C., Balseiro, E., Reissig, M., 2003. Impact of different zooplankton structures on the microbial food web of a South Andean oligotrophic lake. Acta Oecologica 24, S289S298.10.1016/S1146-609X(03)00030-4CrossRefGoogle Scholar
Moreno, P.I., Alloway, B.V., Villarosa, G., Outes, V., Henríquez, W.I., De Pol-Holz, R., Pearce, N.J. G., 2014. A past-millennium maximum in postglacial activity from Volcán Chaitén, southern Chile. Geology 43, 4750.10.1130/G36248.1CrossRefGoogle Scholar
Naranjo, J.A., Singer, B.S., Jicha, B.R., Moreno, H., Lara, L.E., 2017. Holocene tephra succession of Puyehue-Cordón Caulle and Antillanca/Casablanca volcanic complexes, southern Andes (40–41 S). Journal of Volcanology and Geothermal Research 332, 109128.10.1016/j.jvolgeores.2016.11.017CrossRefGoogle Scholar
Naranjo, J.A., Stern, C.R., 1998. Holocene explosive activity of Hudson Volcano, southern Andes. Bulletin of Volcanology 59, 291306.10.1007/s004450050193CrossRefGoogle Scholar
Naranjo, J.A., Stern, C.R., 2004. Holocene tephrochronology of the southernmost part (42 30’-45 S) of the Andean Southern Volcanic Zone. Revista geológica de Chile 31, 224240.10.4067/S0716-02082004000200003CrossRefGoogle Scholar
Panebianco, J., Mendez, M., Buschiazzo, D., Bran, D., Gaitán, J., 2024. Dynamics of volcanic ash remobilisation by wind through the Patagonian steppe after the eruption of Cordón Caulle, 2011. Nature. Scientific Reports 7, .Google Scholar
Parnell, A.C., Buck, C.E., Doan, T.K., 2011. A review of statistical chronology models for high-resolution, proxy-based Holocene palaeoenvironmental reconstruction. Quaternary Science Reviews 30, 29482960.10.1016/j.quascirev.2011.07.024CrossRefGoogle Scholar
Paruelo, J.M., Jobbágy, E.G., Sala, O.E., 1998. Biozones of Patagonia (Argentina). Ecología Austral 8, 145153.Google Scholar
Petit-Breuilh Sepúlveda, M.E., 2004. La Historia de los Volcanes Hispanoamericanos (Siglos XVI al XX): El Modelo Chileno. Serie Casa de los Volcanes N 8. Cabildo Insular de Lanzarote, Las Palmas, Spain.Google Scholar
Quinn, G., 2020. NIST Recommended Practice Guide: Fractography of Ceramics and Glasses. 3rd ed. Special Publication (NIST SP). National Institute of Standards and Technology, Gaithersburg, MD.10.6028/NIST.SP.960-16e3CrossRefGoogle Scholar
Rawson, H., Naranjo, J.A., Smith, V.C., Fontijn, K., Pyle, D.M., Mather, T.A., Moreno, H., 2015. The frequency and magnitude of post-glacial explosive eruptions at Volcán Mocho-Choshuenco, southern Chile. Journal of Volcanology and Geothermal Research 299, 103129.10.1016/j.jvolgeores.2015.04.003CrossRefGoogle Scholar
Ribeiro Guevara, S., Arribére, M., 2002. 137 Cs dating of lake cores from the Nahuel Huapi National Park, Patagonia, Argentina: historical records and profile measurements. Journal of Radioanalytical and Nuclear Chemistry 252, 3745.10.1023/A:1015275418412CrossRefGoogle Scholar
Ribeiro Guevara, S., Rizzo, A., Sánchez, R., Arribére, M., 2003. 210Pb fluxes in sediment layers sampled from Northern Patagonia lakes. Journal of Radioanalytical and Nuclear Chemistry 258, 583595.10.1023/B:JRNC.0000011755.39838.6cCrossRefGoogle Scholar
Robbins, J.A., Herche, L.R., 1993. Models and uncertainty in 210Pb dating of sediments. SIL Proceedings, 1922–2010 25, 217222.10.1080/03680770.1992.11900096CrossRefGoogle Scholar
Roig, F.A., Villalba, R., 2008. Understanding climate from Patagonian tree rings. Developments in Quaternary Sciences 11, 411435.10.1016/S1571-0866(07)10021-XCrossRefGoogle Scholar
Romero, J.E., Alloway, B.V., Gutiérrez, R., Bertín, D., Castruccio, A., Villarosa, G., Schipper, C.I., et al. 2021. Centennial-scale eruptive diversity at Volcán Calbuco (41.3 S; Northwest Patagonia) deduced from historic tephra cover-bed and dendrochronologic archives. Journal of Volcanology and Geothermal Research 417, .10.1016/j.jvolgeores.2021.107281CrossRefGoogle Scholar
Serra, M., 2017. Quironómidos (Insecta: Diptera; Chironomidae) subfósiles como indicadores de cambios climáticos y eventos geológicos de disturbio en sedimentos de lagos andinos de Patagonia Norte. Tesis de doctorado en Ciencias Biológicas, Universidad del Comahue, Neuquén, Argentina. https://ri.conicet.gov.ar/handle/11336/93391.Google Scholar
Serra, M.N., Massaferro, J., Villarosa, G., 2021. Volcanic and environmental impacts on subfossil chironomids from Northern Patagonia (Argentina) over the last 700 years. Limnology 22, 337346.10.1007/s10201-021-00660-4CrossRefGoogle Scholar
[SERNAGEOMIN] Servicio Nacional de Geología y Minería de Chile, 2023. Ranking de riesgo volcánico chileno 2023. https://rnvv.sernageomin.cl/wp-content/uploads/sites/2/2023/10/Ranking-2023_tabloide_20231012.pdf.Google Scholar
Sosa, D.S., Daga, R., Demichelis, A., Alfonzo, W., Guevara, S.R., 2024. Extending the mid-18th century eruptive record of the Cordón Caulle Volcanic Complex (40, 5° S) through the study of three lake sedimentary sequences. Journal of South American Earth Sciences 137, .10.1016/j.jsames.2024.104837CrossRefGoogle Scholar
Stern, C.R., 2004. Active Andean volcanism: its geologic and tectonic setting. Revista geológica de Chile 31, 161206.10.4067/S0716-02082004000200001CrossRefGoogle Scholar
Sulpizio, R., Zanchetta, G., D’Orazio, M., Vogel, H., Wagner, B., 2010. Tephrostratigraphy and tephrochronology of lakes Ohrid and Prespa, Balkans. Biogeosciences 7, 32733288.10.5194/bg-7-3273-2010CrossRefGoogle Scholar
Tagiri, M., Lopez-Escobar, L., Onuma, N., 1985. Preliminary report of a geochemical study of thirteen volcanoes in the Southern South Andes Volcanic Belt (42° S - 46° S). In: Geochemical Investigation of the Southern Andes Volcanic Belt, 1982–1984. Ibaraki University/University of Chile, pp. 161194. https://gbank.gsj.jp/ld/resource/geolis/199106887.Google Scholar
Ustrzycka, A.N., Piotrowska, N., Kłusek, M., Pawełczyk, F., Michczyńska, D.J., Michczyński, A., Kozioł, A., Jędrzejowski, M., 2025. Performance of the new MICADAS spectrometer at the Radiocarbon and Mass Spectrometry Laboratory, Gliwice, Poland. Radiocarbon 67, 365377.10.1017/RDC.2024.126CrossRefGoogle Scholar
Watt, S.F., Pyle, D.M., Mather, T.A., 2011. Geology, petrology and geochemistry of the dome complex of Huequi volcano, southern Chile. Andean Geology 38, 335348.10.5027/andgeoV38n2-a05CrossRefGoogle Scholar
Watt, S.F., Pyle, D.M., Mather, T.A., 2013. Evidence of mid-to late-Holocene explosive rhyolitic eruptions from Chaitén Volcano, Chile. Andean Geology 40, 216226.10.5027/andgeoV40n2-a02CrossRefGoogle Scholar
Watt, S.F., Pyle, D.M., Mather, T.A., Martin, R.S., Matthews, N.E., 2009. Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén, Chile. Journal of Geophysical Research: Solid Earth 114(B4). https://doi.org/10.1029/2008JB006219.CrossRefGoogle Scholar
Supplementary material: File

Alfonzo et al. supplementary material

Alfonzo et al. supplementary material
Download Alfonzo et al. supplementary material(File)
File 1.8 MB