Skip to main content Accessibility help
×
×
Home

Adaptability analysis in a participatory variety trial of organic vegetable crops

  • Alexandra Lyon (a1) (a2), William Tracy (a1), Micaela Colley (a3), Patrick Culbert (a2), Michael Mazourek (a4), James Myers (a5), Jared Zystro (a1) and Erin M. Silva (a1)...

Abstract

Successful organic farming requires crop varieties that are resilient to environmental variability. Assessing variety performance across the range of conditions represented on working farms is vital to developing such varieties; however, data collected from on-farm, participatory trials can be difficult to both collect and interpret. To assess the utility of data arising from participatory trialing efforts, we examined the performance of butternut squash (Cucurbita moschata L.), broccoli (Brassica oleracea L.) and carrot (Daucus carota L.) varieties grown in diverse organic production environments in participatory trials in Oregon, Washington, Wisconsin and New York using adaptability analysis (regression of variety means on environmental index). Patterns of adaptation varied across varieties, with some demonstrating broad adaptation and others showing specific adaptation to low- or high-yielding environments. Selection of varieties with broad vs specific adaptation should be guided by farmers’ risk tolerance and on-farm environmental variation. Adaptability analysis was appropriate for continuous variables (e.g., yield traits), but less so for ordinal variables and quality traits such as flavor and appearance, which can be vitally important in organic vegetable crop variety selection. The relative advantages of adaptability analysis and additive main effects and multiplicative interactions are also discussed in relation to on-farm trial networks. This work demonstrated the unique challenges presented by extensive participatory vegetable trialing efforts, which, as compared to grain crops, require novel approaches to facilitating farmer participation as well as data collection and analysis. Efficient, precise and reliable methods for evaluating quality related traits in these crops would allow researchers to assess stability and adaptation across a wider range of traits, providing advantages for effective plant breeding and trialing activities within the organic sector.

Copyright

Corresponding author

Author for correspondence: Alexandra Lyon, E-mail: alexandra.lyon@ubc.ca

Footnotes

Hide All
*

Current address: University of British Columbia, 2357 Main Mall, Vancouver, BC, V6 T 1Z4, Canada.

Footnotes

References

Hide All
Abidin, PE, van Eeuwijk, F, Stam, P, Struik, PC, Malosetti, M, Mwanga, RO, Odongo, B, Hermann, M and Carey, EE (2005) Adaptation and stability analysis of sweet potato varieties for low-input systems in Uganda. Plant Breeding 124, 491497.
Ashby, J (1990) Evaluating Technology with Farmers. Cali, CO: Centro Internacional de Agricultura Tropical (CIAT).
Baenziger, PS, Salah, I, Little, RS, Santra, DK, Regassa, T and Wang, MY (2011) Structuring an efficient organic wheat breeding program. Sustainability 3, 11901205.
Beans, C (2017) Science and culture: vegetable breeders turn to chefs for flavor boost. The Proceedings of the National Academy of Sciences 114, 1050610508.
Becker, HC and Leon, J (1988) Stability analysis in plant breeding. Plant Breeding 101, 123.
Bellon, MR, Berthaud, JB, Smale, M, Aguirre, JA, Taba, S, Aragón, F, Díaz, J and Castro, H (2003) Participatory landrace selection for on-farm conservation: an example from the Central Valleys of Oaxaca, Mexico. Genetic Resources and Crop Evolution 50, 401416.
Bradley, JP, Knittle, KH and Troyer, AF (1988) Statistical methods in seed corn product selection. Journal of Production Agriculture 1, 34.
Burger, H, Schloen, M, Schmidt, W and Geiger, HH (2008) Quantitative genetic studies on breeding maize for adaptation to organic farming. Euphytica 163, 501510.
Ceccarelli, S (1994) Specific adaptation and breeding for marginal conditions. Euphytica 77, 205219.
Ceccarelli, S, Grando, S and Hamblin, J (1992) Relationship between barley grain yield measured in low- and high-yielding environments. Euphytica 64, 4958.
Ceccarelli, S, Erskine, W, Hamblin, J and Grando, S (1994) Genotype by environment interaction and international breeding programmes. Journal of Experimental Agriculture 30, 177187.
Ceccarelli, S, Grando, S, Singh, M, Michael, M, Shikho, A, Al Issa, M, Al Saleh, A, Kaleonjy, G, Al Ghanem, SM, Al Hasan, AL et al. (2003) A methodological study on participatory barley breeding II. Response to selection. Euphytica 133, 185200.
Chable, V, Conseil, M, Serpolay, E and Lagadec, F (2008) Organic varieties for cauliflowers and cabbages in Brittany: from genetic resources to participatory plant breeding. Euphytica 164, 521529.
Coe, R (2002) Analyzing ranking and rating data from participatory on-farm trials. In Bellon, MR and Reeves, J (eds), Quantitative Analysis of Data from Participatory Methods in Plant Breeding. Mexico, DF: CIMMYT, pp. 4465.
Dawson, JC, Rivière, P, Berthellot, J-F, Mercier, F, Kochko, P, Galic, N, Pin, S, Serpolay, E, Thomas, M, Giuliano, S and Goldringer, I (2011) Collaborative plant breeding for organic agricultural systems in developed countries. Sustainability 3, 12061223.
de Mendiburu, F (2017) Statistical Procedures for Agricultural Research using R. La Molina, Lima: Universidad Nacional Agraria.
Drinkwater, LE, Letourneau, DK, Workneh, F, van Bruggen, AHC and Shennan, C (1995) Fundamental differences between conventional and Organic Tomato Agroecosystems in California. Ecological Applications 5, 10981112.
Eberhart, SA and Russell, WA (1966) Stability parameters for comparing varieties. Crop Science 6.
Entz, MH, Kirk, AP, Vaisman, I, Fox, SL, Fetch, JM, Hobson, D, Jensen, HR and Rabinowicz, J (2015) Farmer participation in plant breeding for Canadian organic crop production: implications for adaptation to climate uncertainty. Procedia Environmental Sciences, Agriculture and Climate Change—Adapting Crops to Increased Uncertainty (AGRI 2015) 29, 238239.
Finlay, KW and Wilkinson, GN (1963) The analysis of adaptation in a plant-breeding programme. Crop & Pasture Science 14, 742754.
Francis, TR and Kannenberg, LW (1978) Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes. Canadian Journal of Plant Science 58, 10291034.
Frossard, D (2002) How farmer-scientist cooperation is devalued and revalued: a Philippine example. In Cleveland, DA and Soleri, D (eds), Farmers, Scientists and Plant Breeding: Integrating Knowledge and Practice. New York, NY: CABI Publishing, pp. 137160.
Gauch, HG (2006) Statistical analysis of yield trials by AMMI and GGE. Crop Science 46, 14881500.
Haussmann, BIG, Fred Rattunde, H, Weltzien-Rattunde, E, Traoré, PSC, vom Brocke, K and Parzies, HK (2012) Breeding strategies for adaptation of pearl millet and Sorghum to climate variability and change in West Africa. Journal of Agronomy and Crop Science. n/a–n/a. doi: https://doi.org/10.1111/j.1439-037X.2012.00526.x.
Healy, GK, Emerson, BJ and Dawson, JC (2017) Tomato variety trials for productivity and quality in organic hoop house versus open field management. Renewable Agriculture and Food Systems 32, 562572.
Hildebrand, PG and Russell, JT (1996) Adaptability Analysis: a Method for the Design, Analysis, and Interpretation of on-Farm Research-Extension, 1st Edn. Ames: Iowa State University Press.
Kirk, AP, Fox, SL and Entz, MH (2012) Comparison of organic and conventional selection environments for spring wheat: comparison of organic and conventional selection environments. Plant Breeding 131, 687694.
Kissing Kucek, L, Dyck, E, Russell, J, Clark, L, Hamelman, J, Burns-Leader, S, Senders, S, Jones, J, Benscher, D, Davis, M, Roth, G, Zwinger, S, Sorrells, ME and Dawson, JC (2017) Evaluation of wheat and emmer varieties for artisanal baking, pasta making, and sensory quality. Journal of Cereal Science 74, 1927.
Lammerts van Bueren, ET and Myers, JR (2012) Organic crop breeding: integrating organic agricultural approaches and traditional and modern plant breeding methods. In van Bueren, ETL and Myers, JR (eds), Organic Crop Breeding. Wiley-Blackwell, pp. 113.
Lin, C-S, Binns, MR and Lefkovitch, LP (1986) Stability analysis: where do we stand? Crop Science 26, 894900.
Lyon, AH, Silva, E, Zystro, J and Bell, M (2015) Seed and plant breeding for Wisconsin's organic vegetable sector: understanding farmers’ needs. Agroecology and Sustainable Food Systems 39, 601624.
Mazourek, M, Moriarty, G, Glos, M, Fink, M, Kreitinger, M, Henderson, E, Palmer, G, Chickering, A, Rumore, DL, Kean, D, Myers, JR, Murphy, JF, Kramer, C and Jahn, M (2009) ‘Peacework’: a cucumber mosaic virus-resistant early red bell pepper for organic systems. HortScience 44, 14641467.
Murphy, KM, Lammer, D, Lyon, S, Carter, B and Jones, SS (2005) Breeding for organic and Low-input farming systems: an evolutionary–participatory breeding method for inbred cereal grains. Renewable Agriculture and Food Systems 20, 4855.
Murphy, KM, Campbell, KG, Lyon, SR and Jones, SS (2007) Evidence of varietal adaptation to organic farming systems. Field Crops Research 102, 172177.
Murphy, SE, Lee, EA, Woodrow, L, Seguin, P, Kumar, J, Rajcan, I and Ablett, GR (2009) Genotype×environment interaction and stability for isoflavone content in soybean. Crop Science 49, 13131321.
Myers, J, McKenzie, L, Mazourek, M, Tracy, W, Shelton, A and Navazio, J (2012 a) Breeding peas, sweet corn, broccoli, winter squash and carrots as part of the Northern Organic Vegetable Improvement Collaborative (NOVIC). in: Strengthening Community Seed Systems. Presented at the Strengthening Community Seed Systems. Proceedings of the 6th Organic Seed Growers Conference, Port Townsend, Washington, USA, 19–21 January 2012. Organic Seed Alliance, pp. 4445.
Myers, J, McKenzie, L and Voorrips, RE (2012 b) Brassicas: breeding cole crops for organic agriculture. In van Bueren, ETL and Myers, JR (eds), Organic Crop Breeding. Wiley-Blackwell, pp. 251262.
Pessarakli, M (ed.) (2016) Handbook of Cucurbits. Boca Raton: CRC Press.
Prairie Road Organic Seed (2018) Zucchini: Dark Star [www Document]. Prairie Road Organic Seed: Northern Grown. Available at https://www.prairieroadorganic.co/products/new-dark-star-zucchini-certified-organic-seed-1-packet-25-seeds (Accessed 11 August 18).
Przystalski, M, Osman, A, Thiemt, EM, Rolland, B, Ericson, L, Østergård, H, Levy, L, Wolfe, M, Büchse, A, Piepho, H-P and Krajewski, P (2008) Comparing the performance of cereal varieties in organic and non-organic cropping systems in different European countries. Euphytica 163, 417433.
R Core Team (2014) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Raman, A, Ladha, JK, Kumar, V, Sharma, S and Piepho, HP (2011) Stability analysis of farmer participatory trials for conservation agriculture using mixed models. Field Crops Research 121, 450459.
Renaud, ENC, Lammerts van Bueren, ET, Paulo, MJ, van Eeuwijk, FA, Juvik, JA, Hutton, MG and Myers, JR (2014) Broccoli cultivar performance under organic and conventional management systems and implications for crop improvement. Crop Science 54, 1539.
SAS Institute, Inc. (2000) SAS 9.4. Cary, North Carolina: SAS Institute, Inc.
Shelton, A and Tracy, W (2015) Recurrent selection and participatory plant breeding for improvement of Two organic open-pollinated sweet corn (Zea mays L.) populations. Sustainability 7, 51395152.
Shukla, GK (1972) Some statistical aspects of partitioning genotype environmental components of variability. Heredity 29, 237245.
Singh, S, Terán, H, Lema, M and Hayes, R (2011) Selection for dry bean yield on-station versus on-farm conventional and organic production systems. Crop Science 51, 621.
Snapp, S (2002) Quantifying farmer evaluation of technologies: the mother and baby trial design. In Bellon, MR and Reeves, J (eds), Quantitative Analysis of Data from Participatory Methods in Plant Breeding. Mexico: CIMMYT, pp. 917.
Soleri, D and Cleveland, DA (2002) Understanding farmers’ knowledge as the basis for collaboration with plant breeders: methodological development and examples from ongoing research in Mexico, Syria, Cuba and Nepal. Farmers Sci. Plant Breed. Integrating Knowl. Pract. 1660.
Tollenaar, M and Lee, EA (2002) Yield potential, yield stability and stress tolerance in maize. Field Crops Research 75, 161169; Preface.
Wolfe, MS, Baresel, JP, Desclaux, D, Goldringer, I, Hoad, S, Kovacs, G, Löschenberger, F, Miedaner, T, Østergård, H and Lammerts van Bueren, ET (2008) Developments in breeding cereals for organic agriculture. Euphytica 163, 323346.
Yan, W (2014) Crop Variety Trials: Data Management and Analysis. Somerset, NJ, USA: John Wiley & Sons, Incorporated.
Yan, W and Kang, MS (2003) GGE biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. Boca Raton, FL: CRC Press.
Yan, W, Kang, MS, Ma, B, Woods, S and Cornelius, PL (2007) GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science 47, 643653.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Renewable Agriculture and Food Systems
  • ISSN: 1742-1705
  • EISSN: 1742-1713
  • URL: /core/journals/renewable-agriculture-and-food-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Lyon et al. supplementary material
Lyon et al. supplementary material 1

 Unknown (61 KB)
61 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed